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Abstract

In the Calculus of Dependent Lambda Eliminations (CDLE),
apure Curry-style type theory, it is possible to generically A-
encode inductive datatypes which support course-of-values
(CoV) induction. We present a datatype subsystem for Cedille
(an implementation of CDLE) that provides this feature to
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The most common approaches to both positivity and ter-
mination checking are syntactic: for the former, this involves
tracking, in the types of constructor arguments, the number
of arrows of which a recursive occurrence of a datatype is
to the left (c.f. [INRIA 2017, Section 4.5.2]); for the latter, re-
cursive invocations are allowed only on subdata revealed by

programmers through convenient notation for declaring datatypegattern matching within the function [Giménez 1995]. Any

and for defining functions over them by case analysis and
fixpoint-style recursion guarded by a type-based termina-
tion checker. We demonstrate that this does not require ex-
tending CDLE by showing how datatypes and functions over
them elaborate to A-encodings, and proving that this elabo-
ration is type- and value-preserving. This datatype subsys-
tem and elaborator are implemented in Cedille, establishing
for the first time a complete translation of inductive defini-
tions to a small pure typed A-calculus.

Keywords lambda-encodings, inductive datatypes, depen-
dent types, pattern matching, elaboration, course-of-values

1 Introduction

Algebraic datatypes (ADTs) are a popular feature of func-
tional programming languages that combine a concise scheme
for declaring datatypes and their constructors with an intu-
itive mechanism for defining functions over them by pattern
matching and recursion. Their popularity extends to imple-
mentations of type theories, wherein properties of data are
proven using the same mechanisms as for defining func-
tions over them. However, a wrinkle in bringing ADTs to
proof assistants based on type theory is concern for the de
Bruijn criterion [Geuvers 2009], i.e., that the assistant pro-
duce proof objects checkable by an implementation of a small
kernel theory. Of particular concern are termination check-
ing for recursive definitions and positivity checking for data
declarations, since to maintain logical soundness implemen-
tations must usually ensure functions and proofs are well-
founded ([Mendler 1991] showed that non-positive datatypes
can be used to define looping terms, without any apparent
recursion in the language).
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such syntactic criteria must usually be implemented in the
kernel language also, increasing its complexity. This situa-
tion is especially unfortunate for termination checking, as
simpler syntactic guards are brittle so it is tempting to make
these more sophisticated to grow the set of accepted defini-
tions.

Happily, positivity and termination checking have more
semantic approaches: for the former, explicit evidence of
positivity can be required to form an inductive type [Matthes
2002], or polarity annotations can be added to the language
of kinds [Abel 2006]; for the latter, type-based termination
checking augments the type system itself with some notion
of the size of datatypes [Abel 2010; Barthe et al. 2004]. Such
principled extensions have more modest impact on the com-
plexity of the kernel language, though can require rework-
ing of pre-existing meta-theoretic results.

In pure type systems, datatypes are defined with A-encodings
that combine case analysis and recursion into a single scheme
that ensures termination. Cedille [Stump 2017, 2018] is a de-
pendently typed programming language which overcomes
some traditional shortcomings of A-encodings in type the-
ory (e.g., underivability of induction [Geuvers 2001]). Cedille’s
core theory, the Calculus of Dependent Lambda Eliminations
(CDLE), is a compact pure Curry-style type theory with no
primitive notion of inductive datatypes. Instead, and as shown
by [Firsov et al. 2018a], it is possible to generically derive
the induction principle for A-encoded data using a Mendler-
style of encoding that features constant-time predecessors
and a linear-space representation. Furthermore, [Firsov et al.
2018b] show how to further augment this with course-of-
values (CoV) induction, an expressive scheme wherein re-
cursive calls are allowed on nested subdata at unbounded
depth and whose well-foundedness is tricky to convey to
syntactic termination checkers.
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Contributions Most programmers (and type theorists!) do
not wish to work directly with A-encodings. Building off the

work of [Firsov et al. 2018a,b], in this paper we add language-
level support for inductive types in Cedille by presenting

a datatype subsystem with convenient notation for declar-
ing datatypes and functions defined over them using pattern

matching and fixpoint-style recursion. In particular, we:

e design a semantic (type-based) termination checker
based on CoV pattern matching, a novel feature allow-
ing Cedille to accept recursive definitions expressed
as CoV induction schemes (Section 2);

e show how datatype declarations and functions over
them are elaborated to A-encodings in Cedille (Sec-
tions 4 and 5); and

e prove that elaboration is type- and value-preserving,
demonstrating that the above can be achieved without
extension of CDLE (Sections 4.1, 5.1, and 5.2).

The datatype system and elaborator are implemented in Cedille

(github.com/cedille/cedille). Our approach demonstrates that

inductive definitions in constructive type theory can be soundly

translated down to a very small pure type system. Indeed,
there is already a translation from Cedille 1.0.0 (which does
not have datatypes) to Cedille Core, a minimal specification
of CDLE implemented in ~1K Haskell LoC. This paper and
its proof appendix treats formally only the elaboration of
non-indexed datatypes to Cedille 1.0.0.

The remainder of this paper is organized as follows: in

Section 1.1 we review CDLE; in Section 1.2 we describe datatype

system using standard examples; Section 2 explains CoV pat-
tern matching; in Section 3 we describe the elaborator inter-
face; in Section 4 we formally treat elaboration of datatype
declarations; in Section 5 we explain elaboration of func-
tions over data using CoV pattern-matching and recursion;
and in Sections 6 and 7 we discuss related and future work.

1.1 Background: CDLE

We review the Calculus of Dependent Lambda Eliminations
(CDLE), the type theory of Cedille. CDLE is an extension of
the impredicative Curry-style (i.e., extrinsically typed) Cal-
culus of Constructions (CC) that adds three new type con-
structs: equality of untyped terms ({t ~ t'}); dependent in-
tersections (1x : T.T”) of [Kopylov 2003]; and the implicit
(erased) products (V x : T.T’) of [Miquel 2001]. The pure
term language of CDLE is the untyped A-calculus; to make
type checking algorithmic, terms in Cedille are type anno-
tated, and definitional equality of terms is modulo erasure of
annotations. The typing and erasure rules for the fragment
of CDLE relevant to this paper are given in Figure 1, with
a full listing given in [Stump 2018] and this paper’s proof
appendix.

Equality {t; ~ t,} is the type of proofs that the erasures
of t; and t; (resp. |t1]| and |#;|) are equal. It is introduced with
f (erasing to A x. x) proving {t =~ t} for any untyped term

Christopher Jenkins, Colin McDonald, and Aaron Stump

t. Combined with definitional equality,  can prove {t; =~
t,} for any fn-convertible #; and t, whose free variables are
declared in the context. Equality proofs can be eliminated
with ¢, where the expression ¢ t — t; {t2} (erasing to |t2])
casts t; to the type of t; when t proves t; and #; are equal.

Dependent intersection 1x:T.T’ is the type of terms ¢
which can be assigned both type T and [t/x]T’, and in the
annotated language is introduced by [#1, t2], where #; has
type T, t; has type [t;/x]T’, and |t;| =g, |t2]. Dependent
intersections are eliminated with projections ¢.1 and ¢.2, se-
lecting resp. the view that term ¢ has type T or [t.1/x]T’

Implicit product V x:T.T’ is the type of dependent func-
tions with an erased argument of type T and a result of type
T’. They are introduced with A x:T. t, provided x does not
occur free in ||, and they are eliminated with erased appli-
cation t; -t;. Erased arguments play no computational role
and exist solely for the purposes of typing.

Figure 1 omits typing and erasure rules for the term and
type constructs of CC. In terms, all type annotations and
abstractions (also using A) are erased, and the argument of
term to type applications (written ¢ - S) is erased. In types,
V and A resp. quantify and abstract over types, and type to
type application is written T-S. In code listings, we omit type
arguments and annotations when Cedille can infer these.

1.2 Datatypes in Cedille

Declarations Figure 2a show definitions of well-known
types using Cedille’s datatype subsystem. The general scheme
for declaring datatypes in Cedille should be straightforward
to anyone familiar with GADTs in Haskell or with depen-
dently typed languages like Agda, Coq, or Idris. We note
some differences from the usual convention below.

e Occurrences of the inductive type being defined are
not written applied to its parameters. For example, the
constructor nil is written having type List rather
than List - A; used outside of the datatype declaration,
nil has the usual type V A:%.List - A

e In constructor types, recursive occurrences of the datatype

(such as Nat in suc : Nat — Nat must be positive, but
need not be strictly positive ([Blanqui 2005] showed
strict positivity is not needed for small datatypes).

e Declarations can only refer to the datatype itself and

prior definitions. Inductive-recursive and inductive-inductive

definitions are not part of this proposal.

Functions To continue to familiarize the reader with Cedille’s
syntax, Figure 2b shows a few standard examples of func-
tional and dependently typed programs. Function pred in-
troduces operator p’ for CoV pattern matching, where it is
used for standard pattern matching. Its operational seman-
tics (Section 5.2) is the usual case branch selection. In pred,
y’ is given scrutinee n of type Nat and a case tree with
branches for each constructor of Nat.


github.com/cedille/cedille

FV(t) € dom(T)

Conference’17, July 2017, Washington, DC, USA

Trt:{t1=ty} Trty:T
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Figure 1. Kinding, typing, and erasure for a fragment of CDLE

(a) Datatype declarations
data Bool: = = tt: Bool | ff: Bool.
data Nat: x = zero: Nat | suc: Nat — Nat.
data List (A: %): %
= nil: List | cons: A — List — List.

pred: Nat — Nat = A n. pu
add: Nat — Nat — Nat
=Am. An. paddN. m {zero —» n | suc m' — suc (addN m')}.

(b) Functions

n {zero - n | suc n' — n'}.

Figure 2. Example datatype declarations and functions

Function add introduces operator p for CoV induction by
combined pattern matching and recursion; the distinction
between pattern matching by p and p’ is made clear in Sec-
tion 2. Its operational semantics is combined case branch se-
lection and fixpoint unrolling. Here, y is used for standard
structurally recursive definitions: in add it is used to define
function addN (so named because it adds n to its argument),
and in the successor case addN is recursively invoked on
the subdata m’ revealed by the constructor pattern suc m’.

2 Course-of-Values Recursion

This section explains course-of-values (CoV) pattern match-
ing, a feature that is the basis of Cedille’s type-based termi-
nation checker. The example of division given in this section
is similar to one appearing in [Firsov et al. 2018b]; whereas
they use their generic development as a library to imple-
ment this, we use their development as a back-end, and the
example illustrates CoV recursion in our surface language.
Due to space restrictions we do not discuss here an example
of CoV induction in the surface language, though this too is
supported by the datatype subsystem (see Sections 3 and 5).

Termination checking In general purpose functional lan-
guages, programmers are free to define functions using pow-
erful recursion schemes, including general recursion. Users
of implementations of type theories are usually not afforded
such freedom, as these implementations must usually en-
sure recursive definitions are well-founded or risk logical
unsoundness. To that end, it is common to use a termina-
tion checker implementing a syntactic guard, enforcing that
recursive calls are made only on terms revealed by case anal-
ysis on arguments of the function.

Unfortunately, syntactic termination checkers are usually
unable to determine that complex recursion schemes are
well-founded ([Barthe et al. 2004; Bove et al. 2016]). Consider

an intuitive definition of division by iterated subtraction. In
a Haskell-like language, programmers write:

=0
= if (suc n < d)
then zero else suc ((n - (d - 1)) / d)

zero / d
(suc n) / d
This definition is guaranteed to terminate for all inputs, as
the first argument to the recursive call, n - (d - 1), is smaller
than the original argument suc n. As innocuous as this def-
inition may seem to functional programmers, it poses a dif-
ficulty for syntactic termination checkers, as n - (d-1) is not
an expression produced by case analysis of n within the def-
inition of division but an arbitrary predecessor produced by
d — 1 iterations of case analysis. This is the course-of-values
recursion scheme (categorically, histomorphism); it is guar-
anteed to be terminating, but this fact is difficult to commu-
nicate to syntactic termination checkers!

2.1 Course-of-values Pattern Matching

Cedille implements type-based termination checking that is
powerful enough to accept functions defined using the CoV
recursion scheme. At its heart is a feature we call CoV pat-
tern matching, invoked by ', which can be used to define a
version of division written close to the intuitive way, only re-
quiring some typing annotations to guarantee termination.
Termination checking in Cedille works by replacing, in
the types of subdata in pattern guards of inductive p-expressions
(but not '), the recursive occurrences of a datatype with
an abstract (as in, universally quantified) type. This abstract
type and not the usual datatype is the type of legal argu-
ments for recursive calls. Crucially, CoV pattern matching
with p’ preserves this type in the subdata revealed by case
patterns, meaning users can write versions of e.g. predeces-
sor and subtraction which can be used to compute values
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which are then given to recursive calls of division; further-
more, they are easily reused for ordinary numbers. Figure 3
gives these and other auxiliary definitions.

Global declarations We first explain the types and defi-
nitions of predCoV and minusCoV. In predCoV we see the
first use of predicate Is/Nat. Every datatype declaration in
Cedille additionally introduces three global names derived
from the datatype’s name. For Nat, these are:

e Is/Nat: % — x
A term of type Is/Nat - N is a witness that any term
of type N may be treated as if it has type Nat for CoV
pattern matching.

e is/Nat: Is/Nat - Nat is the trivial Is/Nat witness.

e to/Nat: VN:%.Vis:Is/Nat- N.N — Nat
to/Nat is a function that coerces a term of type N to
Nat, given a witness is that N “is” Nat.

In predCoV the witness is of type Is/Nat - N is given ex-
plicitly to p’ with the notation p’<is>, allowing argument
n (of type N) to be a legal scrutinee for Nat pattern match-
ing. Reasoning parametrically, the only ways predCoV can
produce an N output (i.e, preserve the abstract type of its ar-
gument) are by returning n itself or some subdata produced
by CoV pattern matching on it — the predecessor n’ also has
type N. Thus, the type signature of predCoV has the follow-
ing intuitive reading: it produces a number no larger than
its argument, since a result like suc (to/Nat -is n) would
be type-incorrect. Note though that this reading is infor-
mal and outside of the theory, whereas approaches based
on sized types use explicit size indices to track structural
decrease.

Code Reuse The reader may now wonder what the rela-
tion is between predCoV and the earlier pred of Figure 2b.
The p’-expression of pred with the witness given explicitly
is:

p'<is/Nat> n {zero - n | suc n' — n'}

In pred, the global witness is/Nat of type Is/Nat - Nat
need not be passed explicitly, as it is inferable by the type
Nat of the scrutinee n. Furthermore, pred and predCoV are
definitionally equal, as these witnesses are erased from p’-
expressions (below _ indicates an anonymous proof):

_ : {pred = predCoV} = S.

This leads to a style of programming where, when possi-
ble, functions are defined over an abstract type N for which
e.g. Is/Nat - N holds, and the usual versions of functions
reuse these as a special case. This is how minus is defined -
by specializing minusCoV with the trivial witness is/Nat.

The type signature of minusCoV similarly yields a reading
that its result is no larger than its first argument. In the suc-
cessor case, predCoV is given the (erased) witness is. That
minusCoV preserves the type of its argument after n uses
of predCoV is precisely what allows it to appear in an ar-
gument to recursive functions over Nat. Function minus is
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used to define 1t, the Boolean predicate deciding whether
its first argument is less than its second; ite is the usual
definition of a conditional expression by case analysis on
Bool.

Division The last definition, divide, is as expected except
for the successor case. Here, we make let bindings for pn’
and diff, the syntax for which in Cedille is [x = t] — ¢’ anal-
ogous to let x =t in ¢’. Term pn’ is the coercion to Nat of
the predecessor of the dividend pn, using the as-yet unex-
plained Is/Nat witness isType/divD. Term diff is the dif-
ference (computed using minusCoV) between pn and pred d.
Note that diff is guaranteed to be smaller than the original
pattern suc pn. Finally, we test whether the dividend is less
than the divisor: if so, return zero; if not, divide diff by d
and increment. The only parts of divide requiring further
explanation are the witness isType/divD and the type of
pn, which are the keys to CoV recursion in Cedille.

Local declarations Within the body of the p-expression
defining recursive function divD over scrutinee n of type
Nat, the following names are automatically bound:

e Type/divD : %, the type of recursive occurrences of
Nat in the types of variables bound in constructor pat-
terns (such as pn).

e isType/divD : Is/Nat - Type/divD, a witness that
terms of type Type/divD may used for CoV pattern
matching.

e divD : Type/divD — Nat, the recursive function be-
ing defined, accepting only terms of the abstract type
Type/divD. This restriction guarantees that divD is
only called on expressions smaller than the previous
argument to recursion.

The reader is now invited to revisit the definitions of Fig-
ure 2, keeping in mind that the p-expression of add, for ex-
ample, the subdata m’ in pattern guard suc m’ has an ab-
stract type, and the recursively defined addN only accepts
arguments of such a type. With this understood, so to is

divide:predecessor pnhastype Type/divD, witness isType/divD

has type Is/Nat - Type/divD and so the local variable diff
has type Type/divD as required by divD.

3 Elaboration Interface

The generic library of [Firsov et al. 2018a,b] derives induc-
tive datatypes using Mendler-style F-algebras, so we begin
with a brief description of these. For a more thorough treat-
ment of the expressive power of Mendler-style algebras, see
[Ahn and Sheard 2011].

Mendler-style F-algebras It is well understood that an in-
ductive datatype D can be represented categorically as the
carrier of the initial algebra for (i.e., the least fixed-point of)
its signature functor F [Malcolm 1990], with the definition
of a conventional F-algebra in type theory as a pair (X, ¢),
where X is a type (called the carrier) and ¢ is a function of
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predCoV: V N: %. V is: Is/Nat -N. N > N= A N. A is. A n. p'<is> n {zero —» n | suc n' — n'}.

minusCoV: V N: %. V is: Is/Nat :N. N —» Nat — N
=AN. Ais. Am An. g mMinus. n {

| zero —» m

| suc n' — predCoV -is (mMinus n') }.
minus = minusCoV -is/Nat.

1t: Nat — Nat — Bool = A m. A n. p' (minus (suc m) n) {zero — tt | suc r — ff}.
ite: V X: x. Bool > X > X > X=AX. Ab. At. A f. pg' b {tt -t | ff - f}.

divide: Nat — Nat — Nat = A n. A d. p divD. n {
| zero — zero

| suc pn — [pn' = to/Nat -isType/divD pn] - [diff = minusCoV -isType/divD pn (pred d)] -

ite (1t (suc pn') d) zero (suc (divD diff)) 3.

Figure 3. Division using course-of-values recursion

(a) Casts, positivity, and type fixpoints

T'tA:x TrB:x I'Ff:A>B Trp:IIx:A{fx=x}

I'tc:Cast-A-B

I'+Cast-A-B: %

T'HFF:%x—> %

I'+intrCast fp:Cast-A-B

I'telimCast-c=Ax.x:A— B

F'rf:VX:x.VY:x.Cast- XY —> Cast-(F-X)-(F-Y)

I'Mono- F: %

I'tim:Mono-F Trc:Cast-A-B

I+ intrMono f : Mono - F

I'tF:x—> % TI'rim:Mono-F

TrelimMono-im-c = Ax.x:F-A— F-B

I'rFix-Fim: %

F'+rF:x—>%x Trim:Mono-F Trxs:F-(Fix-Fim) T+rF:%—>% IFrim:Mono-F T+ x:Fix-Fim

I'tinxs:Fix-Fim

IF'+outx:F-(Fix-F im)

(b) Generic induction principle for A-encoded data

module GenericCoV (F: * — %) {im: Mono -F}

D: % = Fix -F im.

PrfAlg: (D > *x) > *x = AP: D > *x. VR: x. V c: Cast -RD. IT 0: R —> F -R. V oeq: {o =~ out}.
(IT x: R. P (elimCast -c x)) — II xs: F ‘R. P (in (elimMono -im -c xs)).

induction: V P: D — . PrfAlg -P — II x: D. P x = <..>

Figure 4. Generic library

type F - X — X. A Mendler-style F-algebra, which can also
be used to define D [Mendler 1991; Uustalu and Vene 1999],
is a pair (X, ®), where X is still a type but now function ®
has type VR: x.(R —» X) —» F-R — X, with the R —» X
argument used to make recursive calls on subdata of the
quantified type R. A Mender-style CoV algebra additionally
equips ® with an abstract destructor (i.e., fixpoint unrolling
function) via an argument of type R — F - R, allowing for
further case analysis on subdata at the quantified type R.

3.1 Generic library

Briefly, we describe the definitions of the generic library of
[Firsov et al. 2018b] utilized for datatype elaboration, given
in Figures 4a and 4b. To improve readability, we informally
present some of these definitions as type inference rules
rather than verbatim Cedille code. All such definitions are
definable in Cedille 1.0.0, which lacks datatypes.

Type coercions For any types A and B, Cast - A - B is the
type of generalized identity functions in CDLE, first described
by [Firsov et al. 2018a]. Since CDLE is Curry-style, such a
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function might exist even if A and B are inconvertible. It is
introduced with intrCast f p assuming f:A — Bandpisa
proof that f behaves extensionally like the identity function;
if c:Cast - A - B, then ¢ can be eliminated with elimCast -c¢
which has type A — B and which, crucially, is intensionally
equal (indicated by notation = in the figure) to A x. x.

Positive type schemes Given F:%x — %,Mono-F is the type
of proofs that F is positive (or monotonic). In fact, datatype
elaboration produces just such a proof when checking posi-
tivity of a datatype declaration (Section 4.2). It is introduced
by intrMono, which takes as argument some f of similar
type to the usual lifting of a function over a functor, but re-
stricted to Casts;if im:Mono- F and c:Cast-A- B, then imis
eliminated with elimMono -im -c¢ which has type F-A — F-B
and which is equal to A x. x.

Type fixpoints The type Fix - F im is the least fixpoint of
a type scheme F whose positivity is proven by im:Mono - F.
Functions in and out are the expected rolling and unrolling
functions representing resp. a generic collection of construc-
tors and destructors for a datatype with signature F.

Induction In Figure 4b we give the type signature for the
induction principle of the generic library (notice module pa-
rameters F and im). The type D (the datatype whose signa-
ture is F) is simply an abbreviation for Fix - F im. The type
family PrfAlg is a dependent version of the Mendler-style
CoV algebra. Its additional (erased) arguments are c, an type
coercion from R to D, and oegq, a proof that the abstract de-
structor o is equal to out. Argument c is required to be even
able to state the codomain of PrfAlg, which is the type of
proofs that P holds of the in of xs, after coercing this us-
ing elimMono and c to type F - D. Finally, induction is the
generic induction principle for D.

We conclude by stating the requirements that are needed
to show value-preservation (Theorem 5.2) and the termina-
tion guarantee (Theorem 5.3) that any A-encoding implement-
ing this interface must satisfy.

Requirement 1. Definitions in and out are mutual inverses.
Furthermore, there is a constant bound such that for all xs:F-D,
expression out (in xs) f-reduces to xs in a number of steps
within that bound.

Requirement 2. For every untyped A-expression a, there ex-
ists some term t such that induction a ~»* t and that
inductiona (in xs) w»* a out t xs, for all terms xs.

Requirement 3. For closed definitions of F : *x — * and
im : Mono - F, there exists some closed term t’ of type Fix -
Fim — IIx:Ty. T, (for some Ty and T,) that erases to A x. x.

The first part of Requirement 1 is known as Lambek’s
lemma [Lambek 1968]. Requirement 2 expresses the cancel-
lation law for the initial Mendler-style CoV F-algebra (phrased
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differently: induction computes as a course-of-values re-
cursor for data). Requirement 3 simply states that the elab-
orations of datatypes must be functional. All three require-
ments are satisfied by the library provided by [Firsov et al.
2018b].

3.2 Implementing CoV Pattern Matching

There is a discrepancy between the facilities of the generic
library given in Figure 4 and the features of the surface lan-
guage. A recursive function over datatype D with signature
F defined using induction has available as assumptions
0: R — F - R (where R is a type variable that has been
quantified over) and oeq : {o ~ out}. However, it is unde-
sirable to expose in the surface language details such as the
signature F or the generic destructor out; we expect to be
able to work with case trees and that there is shared syntax
for pattern matching over data with both the concrete and
abstract type.

This discrepancy is bridged by a small translation layer
sketched in Figure 5, which serves as the interface for datatype
elaboration. Term definitions are omitted (indicated by <. . >);
we briefly summarize them.

“Is” witnesses For any type R, IsD- R is the type of triples
consisting of an type coercion of type Cast - R - D, a generic
destructor 0 : R — F - R, and proof {o ~ out}. It simply
packages together some of the assumptions available in any
proofby induction. Term isD is the trivial witness of 1sD-D.
Function toD (which is definitionally equal to A x. x) takes
evidence of IsD - R (for some R) and uses this to produce a
type coercion from R to D. These definitions correspond to
Is/D, is/D, and to/D (for a given datatype D) in the surface
language. Function toFD is not exported to the surface lan-
guage and uses elimMono to cast F - R to F - D, given some
term of type IsD - R.

Proofs by cases TypeByCases-P-R is is the type of proofs
that P holds by case analysis, where P: D — . Thus, the
type of mu’ says that for any term x of type R where IsD- R
holds, to show P holds of x (after casting x to D), it suffices
to give a proof by case analysis on R. Its definition uses the
abstract destructor o (given by is: IsD - R) on x. Definition
mu’ corresponds directly to p’ in the surface language.

Proofs by induction ByInd-:P isthe generic type of proofs
that property P holds by induction. It is defined using ByCases
and additionally equipped with an inductive hypothesis and
evidence of IsD - R for the quantified type R. Thus, the type
of mu says that P holds for any x : D when, under the as-
sumption that P holds for every x’ of type R (for some R for
which IsD - R holds), P holds for the in of xs for all xs:F - R;
use of the abstract type R breaks circularity. Definition mu
corresponds to y in the surface and uses induction, repack-
aging the assumptions available to the PrfAlg argument for
use by its argument of type ByInd - P.



module Datalnterface (F: * — %) {im: Mono - F}.
import GenericCoV -F -im.

IsD: * — % = <,.>

isD: IsD D = <..>

toD: VR: . V _: IsD -R. R > D = <..>

toFD: VR: x. V _: IsD -R. F R - F D = <..>
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ByCases: (D —» x) —» II R: . IsD R - * = AP: D > %x. A R: %x. A is: IsD -R. IT xs: F -R. P (in (toFD -is xs)).
mu': VR: . V is: IsD -R. IT x: R. ¥V P: D — . ByCases ‘P -R is — P (toD -is x) = <..>

ByInd: (D > x) > x = AP: D —> . VR: . V is: IsD -R. (II x: R. P (toD -is x)) — ByCases ‘P ‘R is.

mu: IT x: D. VP: D —» %. ByInd -P - P x = <..>

Figure 5. Interface for datatype elaboration

4 Elaboration of Datatype Declarations

Notation In this section we give a formal description of
the elaboration of non-indexed datatypes in Cedille to A-
encodings in Cedille 1.0.0 (which lacks datatypes); this is
also the scope of the accompanying proof appendix. A decla-
ration of datatype D of kind x is written Ind[D, R, A], where

e Ris a fresh type-variable of kind * whose scope is A

e A is an association of the constructors of D with their
type signatures such that all occurrences of D in the
types of constructor arguments in the surface language
have been replaced by R

For example, the declaration of Nat in Figure 2 translates to

zero : Nat
Ind[Nat, R, suc  : R — Nat I
We write T + Ind[D, R, A] wf to indicate that, for every i
ranging from 1 to the number of constructors in A (written
i = 1..#A), the ith constructor ¢; in A has a type of the form
\r}a i + A;.D (indicating the mixed-erasure quantification over
the dependent telescope of terms and types a;:A;) that is
well-kinded in context I extended by variables R : % and
D: %, and furthermore there are no occurrences of D in the
classifiers of the telescope a;: A;. Notations f\ a;.t and t q; in-
dicates resp. the term-level abstraction and application over
this telescope that respects the erasures and classifiers over
which the variables were quantified. This convention gener-
alizes to the sequence of term and type expressions s;, as in
P (c; 57), when indicated that s; are produced from type and
kind coercions of @;.
By convention, judgments with the hooked arrow I'
t : T < t’ are elaboration rules, written T’ + ¢ : T — _
when we need only that ¢ is well-typed. Judgments without
hooked arrows I' + ¢t : T and I' + T : K indicate typing and
kinding in Cedille 1.0.0. Some inference rules have premises
of the form (T + Em T : % <> _)i=1.#A, accompanied

by a premise (c; : \r} a;:A;. D € A)j—1. #p; the first indicates

a family of derivations of the parenthesized judgment in-
dexed by the ith constructor of A and its constructor argu-
ment telescope a;:A;, and the second merely names these
telescopes explicitly and exhaustively. T'® indicates a typing
context consisting of the definitions in Figures 4 and 5.
Italics indicates meta-variables, teletype font indicates
code literals (except in meta-variables denoting generated

names like Is/D), and superscript Joyyotes labels for meta-variables.

We use the following labeling convention for expressions
elaborated from datatypes and their constructors: F for the
usual impredicative encoding of a datatype’s signature type
scheme; ™ for the datatype signature formed by dependent
intersection and supporting a proof principle; and F* for the
least fixpoint of the datatype’s “proof signature.”

4.1 Datatype and Constructor Elaboration

Figure 6 shows elaboration of a datatype D and its construc-
tors. To improve readability we give a set of judgments, each
formed from a single rule performing one task: [F] and [cF]

elaborate resp. the usual impredicative encoding of a datatype’s

signature type scheme and its constructors; [FI] and [cFI]
the inductive signature and its constructors; [FIX] and [cFIX]
the least fixpoint of the inductive signature and its construc-

tors; and [DaTA] of the form T + Ind[D, R, A] 4 T, IndEI[D, R, A, ©, &E]

adds the datatype, constructors, globals (8), and elabora-
tions (&) to the context.

In rule [F], the first premise serves to name the family
of constructor argument telescopes (ai:A;)i=1. 4, and the

second premise elaborates the family of types gm X,
where X is fresh wrt I'. The body of the elaborated type
scheme is a function type quantifying over X and abstract
constructors x; for i = 1..#A (themselves functions quanti-
fying over the appropriate elaborated constructor argument
types) with codomain X. In rule [cF] we elaborate the jth
constructor for this signature type scheme, abstracting over
the recursive-occurrence type R, the jth sequence of argu-
ments a;, and abstract constructors x; to produce x; a; Con-
cretely, the elaborations for Nat by these two rules are:

Natf: * > * = A R: . VX: x. I z: X. I s: R > X. X.



Conference’17, July 2017, Washington, DC, USA

Christopher Jenkins, Colin McDonald, and Aaron Stump

(cityairAi. D € N)im4n (T, Rk, Xik b §aii A Xt x> ait AL X)iz1.4a

F _
I'+Ind[D,R,A] = ARV X:k. (I x;:y a;: A]. X)i=1. 4a. X

legajiAj.D eAN

[cF]

cF
'+ (Ind[D,R,A],j) = ARG AX. AxXi=q. 44 %; @

T Ind[D, R, A] <> DF

(T'+ (Ind[D,R. AL i) S )it o

(citairAi.D € N)imy.4n (T, Rk, Xk b [ aii A X i x> T ain AL X)iz1.4n

(FI]

FI -
I'+Ind[D,R,A] = AR.1x:D - RV X:D" - R — ». (Il x;: a;: Al. X (cF @7))i1.60. X x

cF e
'+ (Ind[D,R, A}, j) — cf cj:\r} aj:A;.D e A

FI
T+ (Ind[D, R, AL, j) = AR} @.[cf T AX. Axi=1_sn. %) T

FI +
[ +Ind[D,R,Al = D T+ D" < pos
[cFI] [FIX]

FIX
I'+Ind[D,R,A] = Fix - D™ pos

FIX FI _
T+ Ind[D,R,A] < Fix-DF pos T (Ind[D,R, Al,j) > cfl ¢:ai:A.DeA

[cFIX]

FIX
T+ (Ind[D, R, A].j) = A @. in- D™ -pos (cI' - (Fix - D™ pos) @)

T+ Ind[D,R,A] wf T +Ind[D.R A]<> Fix-DF pos (T + (Ind[D,R. Al i) &> c™),_; un
©=(Is/D:x — x, is/D:1s/D-D, to/D=Ax.x:YR:x.Vis:Is/D-R.R — D)

&= D+ Fix - D™ pos,
" | Is/Dw> IsD- D™ pos,

is/D > isD - D -pos,

(ci — CfIX)i=1..#A,

to/D + toD - D' -pos }

T+ Ind[D,R, A] 4T, IndEI[D, R, A, ©, &]

[DaTa]

Figure 6. Elaboration of datatype declarations

zerof: VR: x. Natt R=AR. AX. 1 z. 1s. z.
sucf: VR: . R > Natf R=AR. An. AX. 1z. 1s. sn.

The next two rules, [FI] and [cFI], show elaboration to
resp. the inductive signature type scheme and its construc-
tors. The type scheme elaborated by [FI] returns from a type
argument R the dependent intersection of x: D - R (where DF
is produced by rule [F]) and a proof that, for any property
X :DF-R — x, X x holds if X holds for the constructors
of DF - R applied to their arguments (X (cf a;) in the rule).
[cFI] elaborates the jth constructor of the inductive signa-
ture DY, whose first component c}: a; is the jth constructor

of DF - R applied to its arguments and whose second compo-
nent is a proof (by using the appropriate assumption x;) that
X (cf a;) holds. The two components are indeed convertible
(modulo erasure), satisfying the requirements for introduc-
ing a dependent intersection. Concretely, the elaborations
for Nat by these rules are:

Nat™l: * — % = 1 R: *.
t x: Natf -R. ¥V X: Natf R — .
I z: X zerof. I's: (Il r: R. X (suct r)). X x.

zerofl: V R: x. Natfl R
= AR. [zerof R, A X. A z. 1 s. z].

sucfI: V R: %. R - Natfl R
=AR. An. [suc" n, AX. 1 z. A s. snl.

Rules [FIX] and [cFIX] tie the recursive knot using the
generic interface of Figure 5: datatype D elaborates to Fix -
D™ pos, where D™ is produced by [FI] and pos is a term of
type Mono -DF! (ie., a proof that D! is covariant) whose
production is described in Section 4.2. Rule [cFIX] elaborate
datatype constructors to the in of the constructors of D' ap-
plied to their arguments and instantiated to type Fix-D pos.
Finally, rule [DaTA] associates the datatype declaration with
its elaboration in the typing context, with ® binding the
globals Is/D, is/D, and to/D and & associating datatype
D, its constructors, and its globals with their elaborations.
Note that to/D in © is defined to be A x. x (not just declared
to have a type) for purposes of definitional equality.

Soundness Properties The elaborations of datatype dec-
larations enjoys the following soundness property.

Theorem 4.1 (Elaboration of declarations). Assuming

e I'+ Ind[D,R,A] 4 T, IndEI[D,R, A, 0, E], and
(ci:y @i:Ai.D € N)jzy..4n



(we have elaborated a well-formed datatype with con-
structors of a certain shape)

o - I' = I" (the typing context elaborates, Figure 9)

o I,X:%,R: % + \r}a,-:A,-.X e \r}a,-:Ai’.X implies
FG, F', RZ*, X:ixF g a; ZAl'/.X : *)i=1..#A

(the elaborated constructor argument types are well-kinded)

we have that

e I°.T"+ &(D) : % and
(T + &(c) : y ai:[E(D)/RIA;. E(D))i=1..4n
(the elaborated datatype and constructors have the ex-
pected kind and type)

e IO T+ E(Is/D): x — *,
IO I"+ &(is/D): E(Is/D) - E(D)
(the elaborations of Is/D and is/D have their expected
kinds and types)

e I'C.T"+ &(to/D) : VR:%.V is:E(Is/D)-R.R — &(D),
with |E(to/D)| =g, Ax.x
(the elaboration of to/D has its expected type and con-
vertibility)

4.2 Positivity Checker

Figure 7 lists the judgments used for checking datatype pos-
itivity, the single rule defining its primary judgmentT' + A R:

*.T < pos that proves AR : x. T (of kind * — ) is posi-
tive, and some representative rules for the subtyping judg-
ment; the complete set of rules is given in the proof appen-
dix. These rules are evidence-producing, as the elaborator in-
terface of Section 3 (specifically rule [FIX]) requires explicit
proof of positivity in the form of Mono. This proof is gener-
ated by invoking the subtyping judgment, with an intuitive
reading that A R: x. T is positive if for any Ry and R, where
R; < R; we have [Ry/R|T < [Rz/R]T (with < suggesting a
form of subtyping whose semantics is Cast).

In the subtyping judgment I';s + S < T < s, input
s witnesses a base subtyping assumption (demonstrated in
Figure 7b, top left), and output s’ is a coercion derived from
it, definitionally equal to A x. x. In the positivity rule, this
input is elimCast -z for an arbitrary z of type Cast - R; - Rg,
and the output has type [R;/R]T — [Rz/R]T. To illustrate
the machinery of the subtyping judgment, consider the rule
for II-types (top right): to show [T x:5;. Ty < I x:S,. T, with
base assumption s’, first produce for the domain a coercion s
proving S, < S (note the contravariance), then produce for
the codomain a coercion ¢ proving for all y:S,, [(s y)/x]T; <
[y/x]T; the coercion in the conclusion clearly fn-reduces to
Af. f since coercions s and ¢ do.

A similar reading as for subtyping holds for the subkind-
ing judgment I';s + K; < Ky < S, though the shape of
kind coercion S need not be specified (all types are erased in
terms). The telescope coercion judgment breaks the pattern
by producing a coerced sequence of terms and types s (and
not the coercions) from a telescope a:A;. These are equal
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(modulo erasure) to @ and typeable with telescope a: A, (Fig-
ure 9); they are used in Figure 11 to state the expected type
of each case body for p- and p’-expressions.

This description of our positivity checker is made precise
by the following soundness properties:

Theorem 4.2 (Positivity checker).
1L.IfTisFS<KT—>s"thenT'+rs":S—>T<— _and
Is’| =py Ax.x
2.IfT;sFKi <Ky > SthenTHS:K; - Ky — _
3. IfT + F <5 pos then T,TCF pos:Mono - F < _
4. IfT;s' r a:A< a:B <> SthenT; (a:A)F5: (a:B) —
_and [s| = |q|

These properties are self-explanatory, except for (4) which
makes use of a new judgment form I'; (a:A) + 5 : (a:B) —
_ (Figure 9). This judgment is read “under T and a telescope
a:A, the sequence s is classified by the telescope a:B”, and
is defined by progressively extending the context by each
variable in a:A, typing (kinding) each term (type) in § ac-
cording to each classifier in a: B, and substituting this term
(type) into the remainder of the telescope a:B.

5 Elaboration of Datatype Functions

This section details the typing, operational semantics, and
elaboration of p- and p’-expressions. Due to space restric-
tions we save for the separate proof appendix the complete
listing of elaboration rules, as elaborating the rest of Cedille
is straightforward: all occurrences of datatypes, their con-
structors, and exported global definitions are replaced with
the elaborations mapped by & (Figure 6), auxiliary rules for
elaborating the context and type-coerced constructor argu-
ments, and congruence rules for elaborating non-datatype
term, type, and kind constructs. The main judgments com-
prising elaboration are given in Figure 9. The elaboration
rules are made syntax-directed with a bidirectional reading
[Pierce and Turner 2000] wherein types for elimination forms
(such as p and p’) are checked and those for introduction
forms (such as constructors, not shown) are synthesized.

5.1 Type inference rules

Property lifting The elaboration rules in Figure 6 are able
to satisfy the elaborator interface of Figure 5 by produc-
ing from a well-formed declaration of positive datatype D
a signature functor D! and positivity proof pos. Even so, it
is not yet obvious that the appropriate arguments to func-
tions mu’ and mu can be given when elaborating p’- and p-
expressions. In particular, both mu’ and mu require proofs
ByCases, which in general requires a (non-recursive) depen-
dent eliminator for D! - DF™X_ The careful reader will have
noted in the preceding section that type scheme D' pro-
duced by rule [FI] does support proofs by cases — but only
for properties stated over the type scheme D¥ produced by
(F].
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(a) Main judgments and positivity rule

IF;sEFSST >

Fl—F;pos

‘I*;SI—K1<K2;>S‘

[;sk(a:Ay) <(a:Az) —>s

Positivity Subtyping

T R:x+T:%— _

Subkinding

Telescope coercion

I,R;:%,Ry:%,z:Cast- Ry - Ry ; elimCast -z + [Ry/R]T < [Ry/R]|T — s’

Tk AR:%.T <> intrMono (AR;.ARz. Az intrCasts’ (A_. )

(b) Subtyping rules (incomplete listing)

I'ts:S—>T— _

sz Adx.x [s"FS2<S1os

L, y:Sas" (s y)/x|Ty < [y/x]T; — ¢

[;sESKT > s

I8 Fx:S1. Ty S Ox:S;. T, > Af Ayt (f (sy))

Figure 7. Positivity checker

import DataInterface -DFT -pos.
Liftp : I P: DFIX — %, I R: . IT is: IsD -R. DF R — %
=AP: D™ — %, A R: %x. Ais: IsD R. A x: DF R.

¥ m: DFT R. V eq: {m ~ x3}.

P (in (¢ eq - (toFD -is m) {x})).

Figure 8. Lifting of properties of D'* to DF

The solution to this mismatch is given in Figure 8, listing
the type-level function Liftp lifting properties P of D' to
a property of DF. Given such P, a type R, a witness is of type
IsD-R, and x of type DF - R, Liftp-P-R is x is a proof that P
holds for the in of x, where the ¢-expression casts x to the
type D! - DX of the expression toFD -pos -is m, for any m
equal (by eq) to x. Recall that toFD erases to A x. x; thus the
expression toFD -pos -is m is convertible with m. Because of
this, eq really does prove these two expressions are equal.

Case branches To aid in reading the elaboration rules for
1 and p’-expressions, we separate into a single judgment the
book-keeping common to both for elaborating constructor
case branches. The single rule [CasEs] forming this judg-
ment is given in Figure 10. It should be read as taking as in-
put a case tree {c; a; — t;}i=1. #a, a type family P, and a wit-
ness is, and producing type-coerced constructor arguments
5;, a collection {1){ a;. 1] }i=1. 4 of elaborated case bodies, and
an elaborated witness is’. In its premises, we check that the
given witness is has type Is/D - T (where Is/D is associ-
ated with some declared datatype D) and elaborate it, then
check that constructors of the case tree cover exhaustively
the constructors of D (and are given the correct number of
and erasures for the pattern-bound variables). We produce
5; via telescope coercion of a; (Figure 7), using the coercion
to/D -is to cast recursive occurrences of T (given by the oc-
currences R) to D in the types of pattern-bound variables
given to ¢; in the case tree. In the last premise, we elaborate

10

each case branch at its expected type — a mixed-erasure ab-
straction over the constructor arguments a; with codomain
P (ci 57).

Elaboration of ji- and p’-expressions With Liftp and
rule [CasEs] we are now able to explain how p- and p’-
expressions are elaborated, shown in Figure 11.

In the premises of rule [Mu], we begin by requiring that
the kind of the motive P is D — %, and the type of the
scrutinee f is some concrete datatype D, elaborating them to
resp. P’ and t’. We then declare an extended typing context
I/, formed by I" and the p-locals Type/ih, isType/ih, and ih,
which directly correspond to the assumptions available for
any proof ByInd - P’. We then elaborate the case branches
with type Type/ih and witness isType/ih, producing the col-
lection of elaborated case bodies {/{ G t]}i=1. 4 (since wit-
ness isType/ih is a variable, it will elaborate to itself).

In the conclusion of [Mu], to elaborate the entire p-expression

we use the generic function mu of Figure 5, instantiating it
with the datatype’s elaborated (inductive) signature functor
D and proof pos it is positive. We also give mu the elab-
orated scrutinee t’ and motive P’. The final argument to
mu is a proof of type ByInd - P. Within the body of this A-
expression, we invoke x.2 with a lifted motive, giving it the
elaborated case branches extended by assumptions m and
eq introduced by lifting. Under this context, the elaborated
case bodies t] are expected to have a type produced by lift-
ing P’, and (by a forward reference to Theorem 5.1) they
indeed have types convertible with this expected type. The
final arguments required for the lifted elimination is some
D . Type/ih (given by x) and proof it is equal to x (proved
by f).

Rule [Mu’] is similar to [Mu], so we describe only the
significant differences. Operator p’ is given a scrutinee ¢ of
type T, and expects a witness is proving that Is/D- T for a
suitable datatype D; this is checked by using the auxilliary
judgment for elaborating case branches. In the conclusion,



Conference’17, July 2017, Washington, DC, USA

T+rT: KT
Types

Trt: Tt

Terms Kinds

F'+K—K'| [Trtt— FL T’
| | P

Pure terms

[;(a:A)F5:(a:B)— s

Telescope coercions

Contexts

Figure 9. Elaboration judgments

I+is:Is/D-T < is IndEI[D,R,A,0,8] €T Is/De€®,to/DeO® (c;:y a;:Ai.D € N)i=1 4a

(T; to/D -is + a;:[T/R]A; < a;:[D/RIA; = 5)i=1.sa (T F 2@ t; [ ai:[T/RIALP (i 57) < £ @i t])iz1.4a

— — = [CasEs]
Tk {ciai — ti}i=1..5a : Cases({P (c; $i)}i=1..5n, ) = ({} @i ti"}i=1. 4, 15")
Figure 10. Elaboration of case branches
IndEI[D,R,A,©,E] € T,E(D) = Fix - DM pos,to/D€® T+HP:D—*<—P Trt:Dest
I'" =T,Type/ih : x,isType/ih : Is/D - Type/ih, ih : 1 y:Type/ih. P (to/D -isType/ih y)
I’ +{c;j a; — t;} : Cases({P (c; 57)}, isType/ih) — ({1){ a;. t;'}, isType/ih) (Mu]
U

T Fu ih. t@P{cia_i—> ti}i:l..#A :Pt <> mu- DM -pos t P

(AType/ih. AisType/ih. A ih. Ax.x.2 - (Liftp - P’ - Type/ih isType/ih) (ﬁ a. Am.Neq.t])i=1. 4 -Xx -f)

IndEI[D,R,A,©,E] €T, ED) =Fix-D" pos,to/De€® Trt:T—t'
T+ {ci @ — t;} : Cases({P (c; 51)}, is) = ({} @ ti'}, is")

TrT:*—>T TrP:D—>x—P

(Mu’]

['<is>t @P { ¢; @ — t;}i=1..4a : P (to/D -ist) < mu’ - DY -pos -is’ t’ - P’
(Ax. x.2-(Liftp-P’ - T is") (;1\ a. Am.Aeq. t])i=1. 4p -x -f)

Figure 11. Elaboration of terms (shown: y, u”)

we elaborate the p’-expression using mu’, whose last argu-
ment must be a proof of type ByCases - P’ - T is, similarly
given by property lifting.

Soundness Properties The elaborations of terms (types)
from the surface language have their elaborated types (kinds)
in the internal language:

Theorem 5.1 (Type-preservation). If + T' < T then:

e IfT+K < K’ thenTCT"+ K’
e [fT+T:K < T’ then for someK',T + K — K’ and

eI+ T : K’
o IfT+1t:T <>t then forsomeT', T+ T : % — T’
andT +t': T’

5.2 Operational Semantics

Part of the unwieldiness of working directly with A-encodings
is their size. Our datatype subsystem for Cedille addresses
this by treating datatypes and their constructors opaquely,
giving p- and p’-expressions a primitive operational seman-
tics shown in Figure 12. Cedille’s operational semantics is
defined for untyped terms, i.e., for terms after the erasure
of annotations. To erase both u- and p’-expressions (also
Figure 12) we erase the scrutinee, the motive, any type or
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erased term arguments bound by constructor patterns (indi-
cated by |a;|), and use the erasures of the branch bodies; in
1’-expressions we also erase the witness is.

Soundness Properties To show that our extension of the
operational semantics is sound with respect to that of the
target language, we must introduce an auxilliary judgment
for elaboration of pure (post-erasure) terms whose rules mir-
ror those for elaborating annotated terms — the rules for this
judgment for p and p’ are listed in Figure 13.

Theorem 5.2 (Value Preservation for y and p°). The elab-
orations of - and ' -expressions and the elaborations of the
terms they single-step are joinable:

o If T+ pih (¢3s){cia— titi=1..n < e, and
pih.(¢;s){cia — ti}iz1..n ~> t,andl + t < ey, then
there exists some es such that e; ~* e3 and e; ~* e3

o IfTrp (c;S){ciai— titi=1.n = €1, and
p(cjs){ciai = titiz1.n v t,andT + t — ey, then
there exists some e3 such that e; ~* e3 and ey ~»* e3

Finally, Theorem 5.3 states the termination guarantee of
our datatype subsystem.

Theorem 5.3 (Call-by-name Normalization).
IfTrt:D <t and IndEI[D,R,A,0,E] € T, and ift isa
closed term, then |t'| is call-by-name normalizing.
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| w'<is>t @P { ¢; a; = titi=1..n |

| pih. t @P { cia;i = titi=1..n |
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ot { i lail = |til}iz1..n
wih |t { cilai| = |til}i=1..n

r=Ax.pih. x{cia; — titi=z1.n

p(cis) {ciai — ti}iz1..n > [s/a;lt;

pih. (¢;s){ciai = ti}iz1..n ~ [s/a;][r/ih]t;

Figure 12. Erasure and reduction for y and y’

Frt—=t' Trti—=1t)i-1.n

Frt—=t" Trti—=t)i-1a

Trpih t{cia; = titiz1..n = |mu| '(Aih. Ax. x (2G5 t])iz1.n) TrHp t{cia = ti}iz1.n = MU |t (Ax. x (1G5 1])i=1..n)

Figure 13. Elaboration of pure (post-erasure) terms (shown: p and p1”)

6 Related Work

A-encodings in CDLE This work builds upon [Firsov et al.
2018a,b] which generically derives induction (and CoV in-
duction) in CDLE for A-encoded datatypes arising as the
least fixed point of a class of type schemes generalizing co-
variant functors. Our elaborator interface was derived from

these developments: we repackaged the facilities of the generic

library to implement CoV pattern matching in the surface
language without revealing implementation details.

TCBs in ITPs Many interactive theorem provers (ITPs)
have large trusted computing bases (TCBs). For example,
Coq’s kernel is ~30K OCaml LoC, and some provers like
Agda [Norell 2007] (~100K Haskell LoC) have no kernel. But,
there is much interest in verifying provers themselves [Davis
2015; Harrison 2006] and thus practical interest in keeping
their kernels small [Appel 2001].

[Dagand and McBride 2012] shares with us this goal, de-
scribing the elaboration a language with inductive defini-
tions, pattern matching, and recursion to a simpler core the-
ory. They show how to translate datatype declaration to
Martin-Lof type theory extended with a universe of posi-
tive inductive types and description labels. In comparison,
our core theory has no inductive primitives and elaboration
produces explicit proofs of positivity rather than elaborat-
ing to types that are positive by construction.

[Goguen et al. 2006] show how dependent pattern match-
ing ([Coquand 1992]) can be elaborated to a use of a datatype’s
dependent eliminator. CoV pattern matching in this paper
is in many respects less sophisticated than dependent pat-
tern matching; however, an interesting point of compari-
son is the treatment of CoV induction. [Goguen et al. 2006]
accomplish this by providing as the inductive hypothesis
Belowp P x, a large tuple containing proofs that P holds
for all subdata of x. Functions analyzing a static number of
cases analyzed (e.g. fib) may easily make use of this, but ac-
cessing a proof for dynamically computed subdata (e.g. the
result of minusCoV in divide) requires an inductive proof
of a lemma such as Belowyst P (suc n) — P (minus n m)
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(for any m), not required in our work (nor of [Firsov et al.
2018b]).

Semantic Termination Checking [Abel 2010] extends type
theory with sized types, allowing datatypes to be annotated
with size information and the type system guaranteeing that
recursive calls are made on arguments of decreasing size.
Sized types require defining alternative, size-indexed ver-
sions of datatypes and extension of the underlying theory,
whereas in Cedille every standard datatype declaration is
defined with the usual notation and automatically supports
CoV induction. On the other hand, sized types allow for
even more powerful forms of recursive definitions. In partic-
ular, the usual implementation of merge-sort, which is defin-

and lMblesasing sized types, is not straight-forwardly expressible

as CoV recursion as it involves recursion on terms that are
not subdata of the original list.

The Nax language, described by [Ahn 2014], takes an ap-
proach to termination checking similar to ours. In Nax, re-
cursive functions are defined in terms of Mendler-style re-
cursion schemes, including CoV recursion and Mendler-style
induction, whereas in Cedille the p-operator of Cedille pro-
vides users the ability to write definitions using CoV in-
duction. On the other hand, Nax soundly permits datatype
definitions with negative recursive occurrences, possible be-
cause Nax restricts the usage of negative datatypes, whereas
we opt for the more traditional approach of restricting the
rules for the formation of datatypes.

7 Conclusion and Future Work

We have presented a datatype subsystem for Cedille that en-
joys both the expected conveniences (compact notation for
datatype declarations, case analysis, and fixpoint-style re-
cursive definitions) and the desirable feature of CoV induc-
tion derived of A-encodings in CDLE. We further showed
that this subsystem does not require extending CDLE by
presenting inference rules for the additional language con-
structs that elaborate to expressions in Cedille 1.0.0 (which



lacks a datatype subsystem), and showing important sound-
ness properties of the types and operational semantics of
elaborated terms with respect to the surface language.

One immediate usability concern is the proliferation of
explicit type coercions in the case branches of y- and p’-
expressions. We already automatically infer the necessary
type coercions for constructor arguments in the expected
type of case branches using the subtyping judgment in Fig-
ure 7; this can be further integrated into the type system so
that type coercions in the bodies of case branches need not
be explicitly coerced by the programmer, either.

Another direction is extending our datatype subsystem
to support zero-cost reuse for programs and data, derived
generically in CDLE by [Diehl et al. 2018]. One modest step
would be to extend definitional equality in the surface lan-
guage so that constructors of different datatypes are consid-
ered equal when their elaborated A-expressions are, allow-
ing users to derive reuse manually for datatypes and func-
tions. More ambitiously, a higher level syntax (such as or-
naments [Dagand and McBride 2014; McBride 2010]) would
allow programmers to define one type (like Vec) in terms of
another (like List) by describing the function or relation on
terms of the latter to the indices of the former. Such defini-
tions could then be elaborated using generic zero-cost reuse
combinators.
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