
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Spork: Automatic Parallelism Management for Loops

ANONYMOUS AUTHOR(S)

Parallel loops are ubiquitous in high-level parallel programming languages. The semantics of parallel loops

is reasonably straightforward and similar to their sequential counterparts. They are not hard to write, but

they are extremely hard to “get right”: unless the programmer carefully controls the overhead of parallelism

exposed by a parallel loop, its performance will be dismal, so much so that it may be outperformed by its

sequential counterpart. There has been some progress on automatic granularity control to reduce the burden

of manual performance optimizations, but no existing approach performs well, especially for arbitrary loop

bodies that may, for example, include arbitrary nesting, which is very common.

In this paper, we present automatic parallelism management techniques for parallel loops. These techniques

aim to maximize the benefit of parallelism while minimizing its cost without restrictions on the expressiveness

of the loops. To this end, we present two low-level primitives called spork and spoin that can be used to

express loops that execute sequentially with little overhead while remaining “ready to go parallel” at any

moment during execution. We formalize the semantics of these primitives and present compilation techniques

for compiling high-level parallel loops into low-level codes that use spork and spoin. When coupled with a

runtime system that judiciously decides when to actualize parallelism, these primitives allow the overheads

of parallelism to be amortized against real, sequential work. We implement our techniques and perform an

experimental evalation considering a range of benchmarks, including parallel codes that have been manually

optimized over many years. The experiments show that our techniques perform well in practice, delivering

good overheads and speedups, that are within 26% of manually optimized parallel codes, while requiring

absolutely no human effort for performance optimization.

CCS Concepts: • Software and its engineering→ Parallel programming languages.

Additional Key Words and Phrases: parallel programming languages, granularity control, nested parallel loops

1 Introduction

Parallelism has come a long way. In the 1980s, theoreticians noticed that it is possible to design

efficient parallel algorithms just like sequential ones and did so for many problems [Jaja 1992].

The theoreticians of the day, however, worked on a model called PRAM (Parallel Random Access

Machine) that was so out of touch with reality that by the 1990s, it crashed under its own weight,

overtaken by a form of creative destruction that led, starting in the mid-2000s, to the development of

multicore architectures. Compared to PRAM, multicore architectures were more asynchronous and

also more tightly coupled, allowing faster access to memory. Ensuing advances in GPUs (Graphics

Processing Units) and other specialized parallel architectures for tensor processing, and their

applications to AI (and Large Language Models) have proved the staying power of parallelism,

surpassing perhaps the wildest dreams of its early advocates of the yore.

In contrast to speed of advances in parallel architectures, the going has been rough for parallel

software. In principal, it is not difficult to write parallel programs by using high-level parallelism

constructs such as parallel loops supported by modern programming languages. But writing

performant parallel programs, which compete with sequential codes on small numbers of cores

while also scaling to larger numbers, remains a major challenge. For example, just as we could

implement a simple sequential matrix multiplication with three nested loops, we could implement

a parallel matrix multiplication with three nested “parallel-for” loops. But whoever runs this code

is in for a rude awakening: on a single core, the parallel code will be an order of magnitude slower

than its sequential counterpart and will struggle to catch up, even as we use more cores.

Why would such a simple parallel program perform so poorly? The problem is that parallelism

is not free: parallel codes incur overhead to spawn, schedule, and synchronize parallel tasks. For

example, every iteration of a parallel loop can spawn a task to execute the body of the loop in

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Anon.

parallel. Such a spawn operation requires thousands of cycles even with the fastest implementations

on modern hardware [Ghosh et al. 2020a]. Yet, the body of a loop can be relatively tiny, perhaps as

few as a couple dozen cycles (as in the parallel matrix multiple example).

Today, we expect the programmer to control the cost-benefit ratio of parallelism by coarsening

parallel loops. Specifically, the programmer splits the loop into chunks and spawns only one task

per chunk, thereby amortizing the cumulative overhead of parallelism [Tzannes et al. 2014]. This

“tuning” requires great care, because if the chunks are too coarse, then they will reduce parallelism

and harm scalability; if the chunks are too fine, then the overheads will be large. But what exactly

is “too coarse” and “too fine”? This depends on the architecture, the software stack, and even the

actual input to the program, especially in modern workloads which tend to be data-dependent (e.g.,

sparse) and polymorphic. For example, the input to a parallel matrix multiplication routine can

be a matrices of bits, floating point numbers, or an algebraic data structure; matrices may vary

from dense to sparse, and anything in between. Thus even if the programmer somehow manages

to coarsen perfectly, they end up overfitting the code to the architecture, to the software stack, and

to the inputs considered, jeopardizing the portability of the program [Tzannes 2012]. Furthermore,

the resulting code contains chunk size parameters which leak across module abstraction barriers,

e.g., showing up as function arguments that allow adjusting the chunk sizes based on arguments at

each call site.

Motivated by the challenges of manual programmer-driven granularity control, researchers have

sought automation. Early work on oracle-guided scheduling provided the first provably efficient

grainularity control technique but required programmer annotations [Acar et al. 2016a]. Subsequent

work on heartbeat scheduling eliminated the need for annotations to provide a fully automatic

technique [Acar et al. 2018; Rainey et al. 2021; Su et al. 2024]. Considering the Parallel ML language

with fork-join parallelism, more recent work [Westrick et al. 2024] combined compiler, run-time

techniques, and heartbeat scheduling to automate parallelism management entirely. Automatic

parallelism management allows programmer to express all potential for parallelism without any

worry about performance tuning.

In this paper, we extend automatic parallelism management to support ubiquitous parallel loops.

The idea behind our approach is to compile parallel loops into a form which executes sequentially

but can, at a moment’s notice, be split into multiple parallel tasks. To realize this idea efficiently

without restricting the loops, we propose two low-level control-flow constructs, called spork
(sequential or parallel fork) and spoin (sequential or parallel join).

At a high level, spork specifies a loop that runs sequentially by default but remains “parallel

ready” to be parallelized dynamically; symetrically, spoin specifies the synchronization needed

for such a loop based on whether it was parallelized or not. From an operational perspective, each

spork registers an alternative code path for a parallel task, which can be represented implicitly

in the call stack, making its sequential execution cost essentially zero. If the runtime decides to

“go parallel” then it does so by creating a bona fide task from the implicit representation. Each

spork has a matching spoin that decides whether to continue sequentially or to perform a parallel

synchronization, depending on decision made by the runtime.

To support performant parallel loops, the compiler wraps every loop body with a spork-spoin

pair, registering a parallel task to complete the remainder of the iterations, while also executing

sequentially when the runtime deems parallelism unnecessary. The runtime has the choice to

parallelize a loop at each iteration at a cost but this cost will be born almost entirely when parallelism

is actualized. This in turn enables us to amortize the cost by using the heartbeat scheduling

technique [Acar et al. 2018; Rainey et al. 2021] that ensures that parallelism is created only when

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Spork: Automatic Parallelism Management for Loops 3

its costs are amortized. In a nutshell, our approach moves all loop parallelization costs off the fast,

sequential path, while ensuring that parallelism can be exploited without any restrictions.

We formalize the semantics of spork and spoin primitives and implement the semantics by ex-

tending the MaPLe compiler and run-time system. The implementation incorporates the primitives

into an SSA intermediate representation (IR) and adapts existing optimizations and compilation

passes appropriately. Our design of spork (and spoin) allow for certain optimizations, such as

function inlining, which results in static nesting of spork-spoin pairs (corresponding to statically

nested loops), which are key to efficiency. Even though spork and spoin are well suited to parallel

loops, they can also encode other loop-like constructs, including for example, parallel reductions.

We evaluate our approach on over a dozen benchmarks from the Parallel ML Benchmark

Suite [Arora et al. 2021, 2023; Westrick et al. 2024], covering a variety of problem domains, including

graph analysis, computational geometry, sparse linear algebra, numerical algorithms, and text

analysis. Compared to prior work that parallelizes loops by fork-join primitives and uses automatic

parallelism management to handle them, our approach improves performance by a factor of 2x (on

average) for both sequential and parallel runs. Perhaps most notably, we observe that (average)

parallel overheads with respect to sequential runs is 2x with good scalability, leading to 28x average

speedups on 80 cores over sequential (a 46x self speedup). Finally, our approach is less than 25%

slower than manually optimized benchmarks for all core counts. These results show that automatic

parallelism is not just a theoretical idea but can deliver us a future where parallelism can be managed

automatically without any programmer involvement.

The specific contributions of the paper include the following.

• The design of spork (and spoin), new control-flow primitives which are suitable for the

implementation of heartbeat-driven parallel loops.

• Formal definitions of spork and spoin in terms of an SSA intermediate representation and

an operational semantics.

• A compilation strategy for expressing parfor and reduce primitives in terms of spork and

spoin, including important optimizations.

• A full implementation in the MaPLe compiler and run-time system.

• An empirical evaluation, demonstrating on over a dozen benchmarks that our approach is

capable of guarantee low overhead and high scalability without anymanual chunking/tuning

of parallel loops.

2 Overview and Key Ideas

We consider anML-like (higher-order, polymorphic, etc.) source language with support with parallel

for-loops and parallel reductions in the form of the following two higher-order functions.
1

parfor : int × int × (int→ unit) → unit

reduce : (𝛼 × 𝛼 → 𝛼) × 𝛼 × int × int × (int→ 𝛼) → 𝛼

The semantics of parfor(𝑖, 𝑗, 𝑓) is to execute all of {𝑓 (𝑖), 𝑓 (𝑖 +1), . . . , 𝑓 (𝑗 −1)} in parallel. Similarly,

the semantics of reduce(𝑐, 𝑧, 𝑖, 𝑗, 𝑓) is to compute the “sum” of {𝑓 (𝑖), 𝑓 (𝑖 + 1), . . . , 𝑓 (𝑗 − 1)} with
respect to the binary associative function 𝑐 and corresponding “zero” element 𝑧. Throughout the

paper, we will refer to both parfor and reduce as “parallel loops”, where the function 𝑓 in both

cases is the “body” of the loop. These primitive parallel loops can be used to implement a wide

variety of common parallel operations, such as map, filter, scan (prefix sums), flatten, and
many others [Westrick et al. 2022b].

1
In our actual implementation, implement parfor as a special case of reduce, using the trivial combining function over the

type unit. This is optimized away by the compiler, producing an efficient implementation of parfor.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Anon.

The primary contribution of this paper is a technique for compiling and executing parallel loops

which guarantees low overhead while maintaining high scalability, regardless of what code appears

within the loop body. This is difficult, because loops can contain other (nested) loops, which might

be hidden behind function calls, perhaps recursively. It is also common to see “tight loops” with

just a handful of instructions in the loop body. Loops may also be irregular and/or data-dependent,

with no statically predictable cost within each body, and varying costs across different iterations

within the same loop. Our goal is to ensure that all loops perform well, in all possible cases, with

no need for programmer intervention.

Spork and spoin: control-flow primitives for splittable loops. To meet our goal, we propose two

new control-flow primitives called spork and spoin which are used to encode splittable loops. A
splittable loop executes sequentially by default, with nearly zero overhead relative to a sequential

loop, but at any moment can be interrupted and split into two or more parallel tasks, exposing

parallelism. Spork and spoin are used to delimit a splittable loop body, with spork appearing at

the beginning and spoin appearing at the end. Arbitrary code may appear between the two, with

the only restriction that every control-flow path leading out of the spork must eventually reach a

spoin. The spork is used to register an alternative code path for a potential split of the loop. The

spoin is ultimately compiled into a conditional, to check whether or not the split occurred. In the

resulting executable, control-flow can be dynamically diverted in response to a split.

We can then amortize all of the overheads of splitting (including the cost of spawning, scheduling,

and synchronizing tasks) by scheduling splits “infrequently”, using a technique known as heartbeat
scheduling [Acar et al. 2018; Rainey et al. 2021]. The idea is to interrupt the execution periodically by

delivering a “heartbeat signal”. Upon receiving the signal, every thread executing a loop performs a

split. By spacing the heartbeats sparsely, this technique allows amortizing the overhead of splitting

to the cost of the useful, sequential work done between each heartbeat.

Our approach seamlessly supports nested parallel loops with any amount of static or dynamic

(e.g., recursive) nesting. For example, a spork-spoin pair may be statically nested within another;

alternatively, an inner loop may execute within a function call in the body of an outer loop. In

these cases, at each heartbeat, we have a choice of which loop to split. To ensure high scalability,

we always split the oldest (i.e., outermost) loop. Splitting the oldest loop is critical for performance,

ensuring that the critical path of the computation is stretched by at most a constant factor [Acar

et al. 2018]. That is, by always splitting the outermost loop, we ensure that all theoretical parallelism

of the source program is (asymptotically) preserved.

“Three-way” splits. With each spork-spoin pair, we have to specify exactly how the loop is

to be split (if a split occurs). Our approach is to generate two new tasks at each split, each of

which is responsible for half of all remaining iterations; the original task is left only to finish its

current iteration. This is essentially a “three-way” split, where an original task responsible for the

index range (𝑖, 𝑗) splits into three tasks corresponding to the ranges (𝑖, 𝑖 + 1), (𝑖 + 1,𝑚), and (𝑚, 𝑗),
respectively, where 𝑚 = ⌊ 𝑖+1+𝑗

2
⌋ is the midpoint between 𝑖 + 1 and 𝑗 . Note that this strategy is

asymptotically optimal from a parallelism perspective, as it ensures at most a logarithmic number

of splits along the critical path.

An example of the three-way splitting policy is shown in Figure 1 which illustrates the execution

of parfor(0,15,f) for some function f. At each heartbeat, all remaining iterations are split off of

the current iteration and split in half, creating two tasks. The two new tasks recursively execute

instances of parfor(...,f) on subranges determined dynamically, at the time of each split. Each

shaded box delimits a recursive parfor instance. Note the second heartbeat in the diagram, which

is delivered to all active loop iterations, including f(2), which was already previously split. In this

case, any loop within f(2) would be split, adhering to the outermost-first splitting policy.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Spork: Automatic Parallelism Management for Loops 5

f(0) f(1) f(2)

f(3) f(4) f(5) f(6)

f(9) f(10)

f(7)

f(8)

f(11)

f(13)

f(12)

f(14)

... split within f(2) if possible …

Fig. 1. Example execution of parfor(0,15,f) with our three-way splitting policy, driven by a regular heart-

beat. At each heartbeat, all remaining iterations (if any) are split off of the current iteration and split in half,

creating two tasks.

The cost of splitting. The traditional strategy for implementing a parallel loop is to split the loop

range into subranges, which run recursively in parallel. Although it creates parallelism, this strategy

incurs significant overheads compared to its sequential counterpart: computing the midpoint of

the loop range requires a handful of instructions, and each recursive call has push and pop frames

on the call-stack. These overheads amortize well if the loop body is itself large, but otherwise, they

dominate and can harm performance especially in highly irregular workloads where it is difficult to

predict the cost of each loop iteration. Concretely, we have measured that recursive splitting—even

when executed sequentially—can be as much as 6x slower than a sequential loop. Our approach

moves all of this overhead away from the “fast path”, and instead incurs this overhead infrequently,

at each heartbeat.

Low-level intuition. The utility of spork and spoin is that they can be expressed at a reasonably

high level of abstraction, allowing them to be integrated into a compiler and subjected to standard

compiler optimizations. Eventually, these control-flow primitives are lowered into executable code,

and, to provide the reader with some intuition, we briefly describe how the final executable operates.

Our approach hinges on the ability to interrupt and split any loop that is currently in flight.

We rely on standard signal handling mechanisms (specifically software polling [Basu et al. 2021;

Feeley 1993b; Ghosh et al. 2020b]) to switch to a signal handler whenever a heartbeat signal arrives.

The signal handler can then inspect the current call-stack and locate a frame corresponding to an

in-flight loop. Here, we leverage a static classification of return addresses: every return address

either returns to code within a loop body (statically delimited by a spork-spoin pair), or it returns

to some non-loop code. This information is accessible at run-time via a static “frame info” lookup

table, which we include in the compiled executable.

After locating an appropriate frame, the signal handler can then perform a split, which creates a

new task and adjusts the behavior of the original task (to synchronize with the new task, instead of

continuing the loop). We create new tasks by copying the frame and modifying the return address

of the copy, causing it to return to a different code path when resumed; this alternative code path is

statically encoded with the spork. To adjust the behavior of the original task, we write a pointer to

the spawned task into a designated slot of the original stack frame. This designated slot is inspected

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Anon.

Program 𝑃 ::= let 𝐹 in 𝑓main

Function 𝐹 ::= fun 𝑓 (𝑥) = let 𝐵 in 𝑏entry

Basic block 𝐵 ::= block 𝑏 (𝑥) = 𝐶

Block code 𝐶 ::= 𝑆 ;𝐶 | 𝑇
Statement 𝑆 ::= 𝑥 ← 𝑒

Transfer 𝑇 ::= goto 𝑏next (𝑥) | if(𝑥, 𝑏then, 𝑏else) | call 𝑓 (𝑥) ⊲ 𝑏ret | return(𝑥)
| spork(𝑏body, 𝑏spwn) | spoin(𝑏unpr, 𝑏prom) | retjoin(𝑥)

Expression 𝑒 ::= 𝜈 | 𝑥 | 𝑥 + 𝑦 | ...
Value 𝜈 ::= () | true | false | ...
Function name 𝑓 , 𝑔

Block label 𝑏

Temporary 𝑥,𝑦

Fig. 2. Syntax of SSA
sp
, with the three new transfers highlighted: spork, spoin, and retjoin.

at each spoin, which then jumps to the appropriate code: either continuing the loop sequentially

(the “fast path”), or synchronizing with the spawned task (the “slow path”). More implementation

details are given in Section 4.

3 Spork: Sequential/Parallel Fork

We introduce a new intermediate representation language, SSA
sp
, derived from static single assign-

ment form (SSA), and how to lower source-level reduce calls into SSA
sp
. SSA

sp
extends SSA with

three additional basic block transfers for managing parallelism: spork, spoin, and retjoin.

3.1 The SSA
sp
Intermediate Representation

Figure 2 defines the syntax of SSA
sp
. A program 𝑃 is a list of first-order functions, one specially

marked main. Each function has a name, list of parameters, and a list of basic blocks, including one

marked as the function entry point.

Each basic block is a label, list of parameters, and a list of statements terminated by a transfer.

Statements assign the value of an expressions to a temporary (e.g. 𝑥 ← 𝑦 + 𝑧), and transfers enable

control flow across basic blocks (goto, if), functions (call, return), and in SSA
sp
, across threads.

SSA
sp
extends SSA by introducing three new transfers, highlighted in Figure 2. The spork(𝑏body, 𝑏spwn)

(sequential/parallel fork) transfer behaves as a goto 𝑏body (), but it additionally opens a scope in

which 𝑏spwn is a potential entry block for a new thread, should the program choose during execution

to spawn a thread while inside the scope. The spoin(𝑏unpr, 𝑏prom) transfer closes this scope, and
performs a conditional jump: 𝑏unpr if the program never spawned a thread for 𝑏spwn, and 𝑏prom if it

did. In the second (parallel) case, the spawned thread must terminate with the retjoin(𝑥) transfer,
which returns the value of the 𝑥 temporary back to the parent thread and exits. Then, when the

parent thread closes this scope with spoin(𝑏unpr, 𝑏prom), it synchronizes with the child thread and

jumps to 𝑏prom, a basic block that receives the value from the child thread’s retjoin as an argument.

3.2 Operational Semantics

Thread pool P ::= T
Thread state T ::= K ⋄𝐶
Call stack K ::= 𝑘

Stack frame 𝑘 ::= ⟨𝜌,X, 𝑏ret?⟩
Spawn deque 𝜌 ::= 𝑏spwn

Value map X,Y ∈ (temp) ⇀ (value)
Fig. 3. Definitions for SSA

sp

operational semantics

We present definitions for the operational semantics of

SSA
sp
in Figure 3. Note, we use ∅ for an empty list and

𝑎 · 𝑏 is the concatenation of lists 𝑎 and 𝑏. A thread pool

P is a nonempty list of threads. Each thread consists of a

call stack paired with the remaining code from the basic

block the thread is executing. A call stack is a nonempty

list of stack frames, each with three components: (1) a

deque 𝜌 of spawn block labels, one for each unpromoted

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Spork: Automatic Parallelism Management for Loops 7

P ↦→ P′
P1 · P · P2 ↦→ P1 · P′ · P2

step

X ⊢ 𝑒 ⇓ 𝜈
K · ⟨𝜌, X⟩ ⋄ (𝑥 ← 𝑒) ;𝐶 ↦→ K · ⟨𝜌, X[𝑥 ↩→ 𝜈] ⟩ ⋄ 𝐶 stmt

block 𝑏next (𝑦) = 𝐶

K · ⟨𝜌, X⟩ ⋄ goto 𝑏next (𝑥) ↦→ K · ⟨𝜌, X[𝑦 ↩→ X(𝑥)] ⟩ ⋄ 𝐶 goto

fun 𝑔 (𝑦) = let �̄� in 𝑏entry block 𝑏entry () = 𝐶

K · ⟨𝜌, X⟩ ⋄ call 𝑔 (𝑥) ⊲ 𝑏ret ↦→ K · ⟨𝜌, X, 𝑏ret ⟩ · ⟨∅, [𝑦 ↩→ X(𝑥)] ⟩ 𝑔 ⋄ 𝐶 call

block 𝑏ret (𝑥) = 𝐶

K · ⟨𝜌, X, 𝑏ret ⟩ · ⟨∅,Y⟩ ⋄ return(𝑦) ↦→ K · ⟨𝜌, X[𝑥 ↩→ Y(𝑦)] ⟩ ⋄ 𝐶 return

block 𝑏
body
() = 𝐶

K · ⟨𝜌, X⟩ ⋄ spork(𝑏
body

, 𝑏spwn) ↦→ K ·
〈
𝜌 ·𝑏spwn, X

〉
⋄ 𝐶

spork

∀ ⟨𝜌, _, _⟩ ∈ K . 𝜌 = ∅ block 𝑏spwn () = 𝐶′

K ·
〈
𝑏spwn · 𝜌, X, 𝑏ret

〉
·K′ ⋄ 𝐶 ↦→

(
K · ⟨𝜌, X, 𝑏ret ⟩ ·K′ ⋄ 𝐶

)
·
(
⟨∅, X⟩ ⋄ 𝐶′

) promote
block 𝑏unpr () = 𝐶

K ·
〈
𝜌 ·𝑏spwn, X

〉
⋄ spoin(𝑏unpr, _) ↦→ K · ⟨𝜌, X⟩ ⋄ 𝐶

spoin-unprom

block 𝑏prom (𝑥) = 𝐶(
K · ⟨∅, X⟩ ⋄ spoin(_, 𝑏prom)

)
·
(
⟨∅,Y⟩ ⋄ retjoin(𝑦)

)
↦→ K · ⟨𝜌, X[𝑥 ↩→ Y(𝑦)] ⟩ ⋄ 𝐶

spoin-prom

Fig. 4. Selected rules from SSA
sp

operational semantics

spork-spoin scope we are inside (local to this stack frame, i.e. those entered while this was the

current stack frame), (2) a mapping X that stores the value of each temporary in scope, and (3) an

optional continuation block 𝑏ret for returning to this stack frame after a return, present in all but

the current stack frame.

We define the execution of SSA
sp
via the small-step operational semantics in Figure 4. Each rule

is of the form P ↦→ P, modifying the pool of current threads:

• step allows arbitrary stepping of any thread (or slice) in the thread pool, regardless of the

position it occurs in that pool.

• stmt executes a statement 𝑥 ← 𝑒 by evaluating 𝑒 and associating 𝑥 with its value in the

current frame’s value mapping.

• goto jumps to a new block, assigning values to its parameters from the arguments provided.

• call saves which block to return to, pushes a new stack frame onto the call stack, and

initializes it by mapping from function parameters to the values of the arguments.

• return conversely pops the current stack frame and returns to the caller’s, passing the

returned value(s) as arguments to 𝑏ret.

• spork allows its 𝑏spwn block to be promoted into a thread later by pushing it onto the end

of the current frame’s spork deque, then continues with the body block.

• promote may happen nondeterministically at any point while this block is in the spork

deque. It finds the oldest spawn block across all stack frames on the call stack (including

the current frame), pops it, and creates a new thread running that block.

• spoin-prom happens at a spoin when its associated spork was promoted. It requires

that the spork deque is empty: because promotions happen in queue order, we know the

associated spork’s spawn block was promoted only if there are no other blocks to promote.

For similar reasons, we know the successive thread is the child to synchronize with. Once

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Anon.

fun reduce𝑐,𝑧,𝑓 (𝑎, 𝑖, 𝑗)

start ():
goto(𝑎, 𝑖)

guard (𝑎0, 𝑖0):
𝑏 ← 𝑖0 ≥ 𝑗

if(𝑏)

iter ():
𝑖1 ← 𝑖0 + 1

spork

done ():
return(𝑎0)

body ():
call 𝑓 (𝑖0)

accum (𝑎1):
call 𝑐 (𝑎0, 𝑎1)

cont (𝑎2):
spoin

next ():
goto(𝑎2, 𝑖1)

break (𝑎3):
call 𝑐 (𝑎2, 𝑎3)

spwn ():
𝑚 ← 1

2
(𝑖1 + 𝑗)

spork

left ():
call reduce𝑐,𝑧,𝑓 (𝑧, 𝑖1,𝑚)

right ():
call reduce𝑐,𝑧,𝑓 (𝑧,𝑚, 𝑗)

middle (𝑎5):
spoin

leftover ():
call reduce𝑐,𝑧,𝑓 (𝑎5,𝑚, 𝑗)

join (𝑎6):
call 𝑐 (𝑎5, 𝑎6)

exit (𝑎7):
retjoin(𝑎7)

exit2 (𝑎7):
retjoin(𝑎7)

done2 (𝑎4):
return(𝑎4)

may be
inlined

elsethen

body

unpr prom

body

promunpr

spwn

spwn

potential
new thread

potential
new thread

fast path block

slow path block

control flow

when new thread spawns

retjoin data flow

Fig. 5. Implementing parallel reduce in SSA
sp

for a particular 𝑐 , 𝑧, 𝑓 . For each call to the higher-order

reduce(𝑓 , 𝑔, 𝑧, 𝑖, 𝑗), we generate a first-order reduce𝑐,𝑧,𝑓 (𝑧, 𝑖, 𝑗) function unique to that call. The calls to 𝑓 and

𝑐 on the fast path may (and often will) be inlined.

the child ends with a retjoin(𝑦), the original thread uses the value of 𝑦 as an argument to

the 𝑏prom block.

• spoin-unprom happens at a spoin when its spork remained unpromoted, indicated by

a nonempty spork deque. It closes the spork-spoin pair by popping from the end of the

spork deque (which prevents that block from being promoted in the future), then jumps to

the 𝑏unpr block because the scope was unpromoted.

3.3 Implementing Parallel reduce with spork

Using spork, spoin, and retjoin, we can implement a parallel reduce in SSA
sp
for a particular

𝑐 , 𝑧, and 𝑓 as in Figure 5, which allows us to achieve low sequential overhead while maintaining

good scalability on many cores. Aside from promotions (which are amortized by sequential work),

this reduce is much like a sequential fold. The function’s implementation starts with the guard
block, which checks if the loop is complete (that is, 𝑖 ≥ 𝑗). If there is remaining work to do, it

sporks: by default, the program continues to the body block, which calls 𝑓 with the iteration index

𝑖0 and then combines the result with the accumulator 𝑎0 by calling 𝑐 . If the body of the loop (blocks

body and accum) completes without the spork being promoted, spoin jumps to the unpromoted

continuation next, which returns to the loop guard.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Spork: Automatic Parallelism Management for Loops 9

However, if the program wants to spawn a thread while evaluating the loop body and finds

that this is the oldest unpromoted spork, it creates a new thread running spwn. Then, the original
thread resumes its execution and, when finished, spoins: since the spork’s potential parallelism

was promoted, it waits for the newly spawned thread to exit with retjoin and passes that value

as an argument to break. It then calls the combine operator 𝑐 with the accumulated result of the

iterations up to this point (𝑎1) and the result of the rest as computed on the spawned thread (𝑎2),

finally returning that value.

Note that this implementation allows for every single loop iteration to become a task with its

own thread if needed. Additionally, 𝑓 and 𝑐 can be inlined in the loop body, allowing arbitrary

nesting of reduce. This is important for the performance of short, tight loops and nested parallel

loops: the modest overhead of a function call for every loop iteration can be detrimental to the

overall performance of the program. Our design allows for inlining to avoid this, as the fast path of

reduce becomes entirely intraprocedural (having no function call) when 𝑓 and 𝑐 are inlined. In

the case of a benchmark with nested loops (sparse-mxv-csr), we observe as much as +25% speedup

compared to the same program but where the nested reduce call is not inlined.

3.4 Implementing par with spork

fun par𝑓 , 𝑔 ()

start ():
spork

body ():
call 𝑓 ()

cont (𝑥):
spoin

unpr ():
call 𝑔()

prom (𝑦):
goto(𝑦)

ret (𝑦):
return(𝑥,𝑦)

spwn ():
call 𝑔()

exit (𝑦0):
retjoin(𝑦0)

body

unpr prom

spwn

potential
new thread

Fig. 6. Implementing par in SSA
sp
.

While we can write loop-level parallel programs inMPL
sp

by

using reduce, we additionally include a primitive higher-order

function par to support divide-and-conquer style algorithms:

par : (unit→ 𝛼) × (unit→ 𝛽) → 𝛼 × 𝛽
which executes its arguments potentially in parallel and returns

a tuple of their results. As is the case with reduce, by the time

the program is lowered to SSA
sp
, it has been subjected to trans-

formations which change each call par(𝑓 , 𝑔) into a call to a

specialized first-order variant par𝑓 ,𝑔 ().
We implement each par𝑓 ,𝑔 () as the SSAsp

function shown in

Figure 6. To begin, par immediately sporks, calling 𝑓 (). If the
program wants to promote something while evaluating 𝑓 () and
there are no older unpromoted sporks, it spawns a new thread

running 𝑔(). When the original thread finishes evaluating 𝑓 (),
it checks if a promotion occurred with spoin. If another thread

did run 𝑔(), then it synchronizes with that thread and returns

a tuple of their results. Otherwise, it runs 𝑔() serially (in the

original thread) and then returns the two results.

4 Implementation

We have implemented SSA
sp
(Section 3), along with associated parallelism management infras-

tructure, in the context of a compiler and runtime system dubbed MPL
sp

(“MaPLe with a spork”).

MPL
sp

is the latest version of MPL (“MaPLe”), which has been exploring efficient and scalable

parallel functional programming by coupling thread scheduling and memory management for

nested fork-join parallelism [Acar et al. 2015] through disentanglement [Arora et al. 2021; Westrick

et al. 2022a, 2020] and hierarchical heaps [Guatto et al. 2018; Raghunathan et al. 2016].MPL
sp

is the

second version of MPL that employs heartbeat scheduling for automatic parallelism management; it

succeedsMPL
s
(“Sugar MaPLe”) [Westrick et al. 2024], which used a potentially parallel function call

(pcall) primitive to efficiently implement the coarse-grained two-way par, but could not efficiently

implement the fine-grained parallel reduce. The various versions of MPL (collectively referred to as

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Anon.

MPL
∗
) are themselves derived from MLton [MLton nd; Weeks 2006], a whole-program optimizing

compiler for Standard ML. MPL
∗
inherits many features from MLton, especially in terms of the

compiler proper; the most substantial changes are localized to the runtime system to support thread

scheduling and memory management and to the implementation of the (extended) standard library,

where a significant portion of thread scheduling and memory management is implemented in

source SML code with calls to MPL
∗
runtime-system functions as necessary.

In this section, we present an overview of the important aspects of the MPL
sp

implementation.

4.1 Separation of Compiler and Scheduler

Implementing the semantics of SSA
sp
inMPL

sp
requires integration with the thread-scheduling

components of MPL. In particular, the promote rule creates a new thread and the spoin-par rule

synchronizes two threads. This creates a tension, becauseMPL’s thread scheduling and memory

management is implemented outside of the compiler proper, in the runtime system and in source

SML code with calls to runtime-system functions. This separation is good engineering practice, as it

allows the thread-scheduling (including promotion and synchronization) and memory-management

components of MPL to be implemented in high-level programming languages, rather than a low-

level compiler intermediate representation. A direct implementation of SSA
sp
would require the

backend of the compiler to lower spoin and setjoin transfers to uses of synchronization operations,

but those operations are only indirectly available to the compiler, in the sense that they are part of

the program being compiled but are not otherwise distinguished.

To resolve this tension, we implement the promotion and synchronization aspects of SSA
sp
in

source SML code and the runtime system and the control-flow aspects in the compiler. To faithfully

model our implementation, we briefly describe a simple variant of SSA
sp
. This variant changes

the 𝑏spwn block of spork to unary (rather than nullary), replaces the retjoin transfer with the

combination of a setjoin binary expression and a getjoin unary expression, and changes the spork

deque to contain either block labels or join tokens as elements. The promote rule, rather than

popping a 𝑏spwn label from the front of the spork deque, replaces the oldest 𝑏spwn label in the spork

deque with a fresh join token and spawns a new thread that executes 𝑏spwn with the join token as

its argument.
2
As before, if a 𝑏spwn label can be popped from the back of the spork deque, then the

spoin-unprom rule executes 𝑏unpr. But, if a join token can be popped, then the spoin-prom rule

executes 𝑏prom with the join token as an argument. A join rule, that is agnostic to the mechanism

by which threads are spawned, allows one thread executing a setjoin(𝑗, 𝑣) expression (where 𝑗 is

a join token) to synchronize with another thread executing a getjoin(𝑗) expression (with the same

join token) and continues the first thread with a unit value and the second thread with 𝑣 .

The compiler only “knows” about spork and spoin transfers, while the setjoin and getjoin

operations are implemented in source SML code. It is a simple matter to ensure that the code

corresponding to𝑏spwn endswith a setjoin followed by a thread exit and that the code corresponding

to 𝑏prom begins with a getjoin (see Section 4.6).

4.2 Back-End Changes: Using Frames to Implement spork, spoin, and Promotion

The most challenging aspect of the implementation is to efficiently realize the dynamic spork

deque in a manner that both allows the runtime system to identify the oldest spork that can

be promoted and admits an efficient implementation of spoin, particularly the determination of

whether or not the last spork was promoted.

The primary insight is that the idiomatic use of spork and spoin to implement reduce and par
introduces spork and spoin in matching pairs that induce spork scopes that are properly nested (if,

2
In this variant, elements are never popped from the front of the deque, so it might be better described as a spork stack.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Spork: Automatic Parallelism Management for Loops 11

due to inlining, there are multiple spork-spoin pairs in a function). Informally, a spork’s scope

is a region of the control-flow graph that must be entered via the 𝑏body of the spork and exited

via the matching spoin.
3
Proper nesting means that, for any distinct pair of sporks in a function,

their scopes are either disjoint or one is a proper subset of the other.

In fact, we do not require the correspondence between sporks and spoins to be one-to-one; it

suffices that each spork is matched by one or more spoins and each spoin is the match of exactly

one spork.
4
This allows the scope of a spoin to be exited via different matching spoins along

different control-flow paths, rather than requiring control flow to join in order to exit via a unique

matching spoin. In Sections 4.6 and 4.6, we will discuss how this weaker notion is used to reduce

the overhead on the fast path. The manner in which we expose spork and spoin in source SML

code will guarantee that all functions will have properly-nested spork scopes.

Given the control-flow graph of a function with properly-nested spork scopes, we can perform

a simple analysis to statically determine, at each control-flow point, the nesting of spork scopes

that have been entered (by traversing the 𝑏body edge of a spork) but not exited (by passing through

a matching spoin). A static spork nesting is a sequence, where the first element is the spork

of outermost (largest) scope and the last element is the spork innermost (smallest) scope; it is

sometimes useful to consider a static spork as the sequence of 𝑏spwn labels of the sporks. This

static nesting of spork scopes is the key to an efficient implementation of spork and spoin

transfers. The static spork nesting at a control-flow point approximates the dynamic spork deque

of both the original SSA
sp
from Section 3 and the variant described above. Specifically, when the

control-flow point is executed in the variant semantics, the top-frame’s dynamic spork deque will

have the same length as the static spork nesting and can be split into a prefix of join tokens and a

suffix of 𝑏spwn labels and the suffix of 𝑏spwn labels is itself a suffix of the static spork nesting (and

the suffix of 𝑏spwn labels is exactly equal to the spork deque from the execution in the original

semantics). Therefore, the maximum length of the static spork nestings of a function corresponds

to the maximum length of the dynamic spork deque during any execution of that function. Also

note that each spork occurs at the same index in each static spork nesting of which it is a member;

this index can be associated with the spork and each of its matching spoins.

Using these observations, we can give a realization of the spork deque and implementations

of spork and spoin transfers and of promotion. During lowering, when the call stack is made

explicit, the backend reserves spork slots: a contiguous sequence of slots in a function’s stack

frame equal in length to the maximum length of the static spork nestings of the function. At each

control-flow point, the dynamic spork deque corresponds to the prefix of the spork slots with

length equal to that of the static spork nesting associated with the control-flow point; these are

the active spork slots at that control-flow point. Our invariant is that an inactive spork slots is

NULL and that an active spork slot is NULL when it corresponds to an unpromoted element of the

dynamic spork stack and is non-NULL when it corresponds to a promoted element. To establish

the invariant, the backend extends the function prologue with a write of NULL to each of the spork

slots, since function execution begins in an empty spork nesting and all spork slots are inactive.

A spork transfer is lowered to nothingmore than a jump to𝑏body. From the operational semantics,

it might appear that a spork transfer should be lowered to a write of 𝑏spwn to the spork slot

corresponding to the spork’s index (pushing 𝑏spwn to the back of the dynamic spork deque). This

would inform the promotion procedure of the 𝑏spwn of the spork scope that has been entered. But,

writing a (non-NULL) 𝑏spwn would violate our invariant, since the spork slot is transitioning from

3
This property can be formalized in terms of dominators and post dominators.

4
In the compiler IRs, a spork is annotated with a unique identifier and each of its matching spoins is annotated with that

same identifier.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Anon.

inactive to unpromoted active. Moreover, the spork scopes that have been entered but not exited

is statically known for each control-flow point and there is no need to dynamically communicate

that information to the promotion procedure.

A spoin transfer is lowered to a sequence that reads the spork slot corresponding to the spoin’s

index, compares the read value with NULL, and conditionally branches when true to 𝑏unpr and when

false to a new block that writes NULL to the slot and jumps to 𝑏prom with the read value as an

argument. As described earlier, the non-NULL value that is passed to 𝑏prom will be (a pointer to) a join

token used to obtain the final value from the child thread, although the entire compiler is agnostic

to the meaning of the non-NULL value. The write of NULL before jumping to 𝑏prom maintains our

invariant, since the spork slot is transitioning from promoted active to inactive.

Note that these lowerings yield an extremely efficient fast (sequential) path: a spork performs

only a jump (which is likely to be eliminated by merging the 𝑏body block) and a matching spoin

performs only a read, a comparison, and a conditional branch (to 𝑏unpr).

The promotion procedure, implemented in the runtime system, is invoked with a call stack

and a fresh join token and must walk the call stack to find and promote the oldest unpromoted

spork. FromMLton, a call-stack is a contiguous sequence of frames delimited by stack-bottom and

stack-top pointers; a frame collects temporaries that are live when a function is suspended at a

call and stores a return address at the top of the frame. Each return address can be mapped, via

static data emitted by the compiler, to frame information that includes a frame size and an array

recording the frame offsets of live pointers for precise garbage collection. To walk the call stack,

the promotion procedure initializes a frame pointer with the stack-top pointer and iterates over

each frame by reading the return address pointed to by the frame pointer and decrementing the

frame pointer by the size recorded in the corresponding frame info until the frame pointer is equal

to the stack-bottom pointer.

MPL
sp

extends the frame info with the static spork nesting (as an array of 𝑏spwn labels) of the

control-flow point that corresponds to the return address. Based on the invariant for active spork

slots, the promotion procedure must find the deepest (oldest) frame with NULL active spork slots

and then find the NULL active spork slot with the lowest (oldest) index. In order to distinguish

between active and inactive NULL spork slots, the promotion procedure uses the length of the

frame’s static spork nesting. Once the promotion procedure has found the correct frame and active

spork slot, it obtains the 𝑏spwn label from the static spork nesting at the index corresponding to

the found active spork slot. The promotion procedure writes the (non-NULL) join token into the

found active spork slot. Finally, the found frame (including the newly written non-NULL value) is

copied to the bottom of a new call stack, 𝑏spwn is written to the copied frame’s return address, and

NULL is written to all of the spork slots with lower indices than the found spork slot. These writes

correspond to inactivating spork slots, since the 𝑏spwn control-flow point is not in any spork scope.

The lowering of the 𝑏spwn block of a spork transfer is handled specially. In the variant semantics,

the 𝑏spwn block is unary and is expected to be executed with a join token as its argument. When

lowered, a𝑏spwn block is treated as the return block of a call that returns no results. After performing

the caller-side of the returning convention, a value is read from the spork slot corresponding to

the spork’s index, NULL is written to that slot (inactivating it, since the 𝑏spwn control-flow point is

not in any spork scope), and execution continues with the read value as the 𝑏prom argument.

4.3 Front-End and Closure-Conversion Changes

No changes to the syntax or type checking of the source language were made to support spork

and spoin. Instead, we added a polymorphic, higher-order prim_spork_spoin primitive to the

compiler. Compiler primitives are exposed as functions in a generic manner and prim_spork_spoin
required no special handling. Because Standard ML is a higher-order language, it is easy to expose

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Spork: Automatic Parallelism Management for Loops 13

the non-trivial control-flow of spork and spoin as a higher-order primitive. The earliest phase

of the compiler that required changes was the closure-conversion phase, which is responsible for

transforming a higher-order IR into a first-order SSA IR, using defunctionalization [Reynolds 1972]

guided by a monovariant whole-program control-flow analysis [Cejtin et al. 2000].

To the source program, the primitive is simply a polymorphic higher-order function, used as

prim_spork_spoin (tag : int, 𝑓body : unit→ 𝛼, 𝑓spwn : 𝛿 → 𝜁 ,

𝑓unprVal : 𝛼 → 𝛾, 𝑓unprExn : exn→ 𝛾, 𝑓promVal : 𝛼 × 𝛿 → 𝛾, 𝑓promExn : exn × 𝛿 → 𝛾) : 𝛾

The tag, which must be a compile-time constant, is associated with the spork and included

in the static spork nestings added to frame infos; it is used to communicate a policy that is

used at promotion (see Section 4.4). The 𝑓body and 𝑓spwn functions correspond to the code for the

homonymous edges of the introduced spork. Instead of a single matching spoin, the lowering

of prim_spork_spoin introduces two matching spoins; one spoin, with the 𝑓unprVal and 𝑓promVal

functions corresponding to the code for the 𝑏unpr and 𝑏prom edges, is executed if 𝑓body terminates

with a value and the other spoin, with 𝑓unprExn and 𝑓promExn for 𝑏unpr and 𝑏prom, is executed if 𝑓body
terminates with an uncaught exception. If, during optimization, 𝑓body and the functions it calls are

inlined (as is often the case), the resulting control-flow graph will goto directly from the returning

of a value to the value spoin and goto directly from the raising of an exception to the exception

spoin. One motivation for this value/exception split is that it would be incorrect for control to

leave the spork body via an uncaught exception (rather than via a matching spoin). We describe a

second performance motivation in Section 4.6. The 𝛿 argument corresponds to the arbitrary data

value stored in the spork slot when promoted. Although this data value will always be a join

token used for synchronization, making the prim_spork_spoin polymorphic with respect to it

emphasizes that the compiler makes no assumptions about it and treats it opaquely.

The primitive posed little difficulty for the control-flow analysis or defunctionalization trans-

formation of the closure-conversion phase. Translating a prim_spork_spoin simply amounts

to building an SSA control-flow-graph fragment that performs the appropriate defunctionalized

calls in the code executed by a spork and its two matching spoins. The complexity of building

SSA IR control-flow graphs is mediated by a direct-style interface that is inspired by the CPS

translation [Kelsey 1995]. Importantly, this translation of prim_spork_spoin guarantees that the

resulting SSA IR functions have properly-nested spork scopes.

4.4 Parallelism Management

While theMPL
sp

compiler is responsible for the low-level compilation that yields an efficient imple-

mentation of spork and spoin transfers, the thread-scheduling component ofMPL
sp
, implemented

in source SML code and the runtime system, is responsible for the promotion strategy.MPL
sp

uses

a token accounting algorithm [Westrick et al. 2024]: each time a thread performs 𝑁 units of work,

it receives 𝐶 tokens that must be eagerly spent to promote the oldest unpromoted sporks on the

thread’s call stack (with each promotion costing one token), but can be banked if the thread has

no promotable sporks. Eager spending means that a thread must check for unspent tokens when

entering a spork scope (and spend one immediately to promote this spork); we handle this aspect

in Section 4.6. This algorithm guarantees work- and span-efficiency [Westrick et al. 2024]: if a

program has work𝑊 and span 𝑆 (excluding the costs of promotions) and a promotion costs 𝜏 , then

the program will perform at most
𝐶
𝑁
𝑊 promotions and have at most total work (1 + 𝐶 ·𝜏

𝑁
)𝑊 and

total span (𝜏 + 𝑁)𝑆 (including the costs of promotions).

Explicitly counting and checking steps of (non-promotion) work by each thread would be

prohibitively expensive; a practical application of heartbeat scheduling approximates work done by

the passage of (wall-clock) time. An interval timer delivers a SIGALRM to the program with period

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Anon.

𝑁 and a signal handler that grants each active thread 𝐶 heartbeat tokens and attempts promotions.

The 𝑁 and𝐶 parameters are tuned for a particular hardware-software stack, but not for a particular

program. InMPL
sp

for the hardware described in Section 5, we set 𝑁 to 500𝜇𝑠 and𝐶 to 30 to ensure,

on average, 500𝜇𝑠/30 ≈ 16𝜇𝑠 of work per promotion.

When a parent has excess tokens at a promotion, it has the option of giving some of those

tokens to the spawned child (without violating the efficiency guarantees). A spork is tagged with

a token-sharing policy: either give half of the parent’s excess tokens to the child or give all of them.

The “inner” spork in reduce and the spork in par use the first policy, since the body and the

(potential) child thread are typically of comparable work, while the “outer” spork in reduce uses

the second policy, since the remaining loop iterations are expected to be significantly more work

than the one current loop iteration. We consider the reverse (when a child with excess tokens joins

with its parent) in the next section.

4.5 Work-Stealing Scheduler

To execute threads on processors, MPL
sp

uses a fork-join work-stealing scheduler, which provides

an opportunity for additional behavior. When a child is spawned at a promotion, it is pushed

to the back of a scheduler deque, from which it can be stolen by a worker for execution. With

work-stealing, the getjoin operation first observes, by attempting to pop from the back of the

scheduler deque, whether or not the child was stolen.
5
If it was, then a full synchronization with

the corresponding setjoin must occur to obtain a value from the child. But, if it was not, then the

parent can choose how to proceed. It could interpret this as though no promotion happened, in

which case it jumps to the 𝑏unpr code. This is the choice we make for the “inner” spoin in reduce
and the spoin in par. But, for the “outer” spoin in reduce, we execute code similar to the “outer”

spork’s 𝑏spwn, except that it starts the left-half reduction with the accumulator from the spork’s

𝑏body (i.e., with the accumulator from the now-finished loop iteration that was “interrupted” by

the promotion) and terminates with return rather than a setjoin. Even though the child was not

stolen, the fact that a promotion occurred prompts the loop split.

When a stolen child joins with its parent, it gives all of its excess tokens (not necessarily the

same ones that it was given at its promotion) to its parent. When an unstolen child is observed

by its parent, the treatment of its excess tokens (necessarily the same ones that it was given at

its promotion) depends on the token-sharing policy of the spork. If the child received half of its

parent’s excess tokens, then they are discarded; it is typically unhelpful to encourage additional

promotions with more tokens if child threads are not being stolen for execution. But, if the child

received all of its parent’s excess tokens, then they are all returned to the parent; in reduce, this
means that the excess tokens will be available to be fairly shared by the “inner” spork.

4.6 Integration via Source SML Code

A spork_spoin function finishes the implementation of the SSA
sp
semantics, by performing the

necessary integration with the synchronization, parallelism management, and work-stealing com-

ponents around a use of prim_spork_spoin. We must ensure that the 𝑓spwn function seen by the

primitive ends with a setjoin followed by a thread exit and that the 𝑓promVal and 𝑓promExn functions

begin with a getjoin (Section 4.1). We must immediately trigger a promotion if the current thread

has excess tokens (Section 4.4) and we safely expose the token-sharing policies (Section 4.4). We

expose an additional possible code path to be used when a child is spawned by a promotion but is

not stolen (Section 4.5). And, we reify (and later propagate) exceptions raised by the execution of a

5
If the deque is empty, then the child was stolen; otherwise, the back element is the unstolen child.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Spork: Automatic Parallelism Management for Loops 15

fun promote t = runtime_promote (t, newJoin ())
datatype 'a result = Val of 'a | Exn of exception
fun extract res = case res of Val v => v | Exn exn => raise exn
datatype tokshr_policy = GIVE_NONE | GIVE_HALF | GIVE_ALL
fun spork_spoin (policy: tokshr_policy , body: unit -> 'a, spwn: unit -> 'b,

seq: 'a -> 'c, sync: 'a * 'b -> 'c, unstolen: 'a -> 'c): 'c =
let
fun body ' () =
let val _ = if tokens () > 0 then promote (Thread.current ()) else ()
in body () end

fun spwn ' (j: 'b join) = let val sr = Val (spwn ()) handle exn => Exn exn
in setJoin (j, sr) ; Thread.exit () end

fun seqVal ' bv = seq bv
fun seqExn ' exn = raise exn
fun syncVal ' (bv, j: 'b join) = case getJoin j of

NONE => unstolen bv
| SOME sr => sync (bv, extract sr)

fun syncExn ' (exn , j: 'b join) = (getJoin j ; raise exn)
val tag = encodePolicy policy

in
prim_spork_spoin (tag , body ', spwn ', seqVal ', seqExn ', syncVal ', syncExn ')

end

Fig. 7. spork_spoin function that wraps a use of the prim_spork_spoin primitive

child thread (giving precedence to exceptions raised by the body). This well-behaved spork_spoin
function (Figure 7) can be used to robustly implement higher-level parallel operations.

We focus again on the fast (sequential) path that excludes “user code”: the (implicit, compiler-

implemented) spork, execution of body’ without an eager promotion and excluding body, the
(implicit, compiler-implemented) spoin, execution of seqVal’ excluding seq. Compared to the

fast pass described at the end of Section 4.2, this adds only a read of the current thread’s tokens

(stored as thread-local metadata), a comparison, and a conditional branch.

We also provide a performance reason for prim_spork_spoin to handle exceptions. Suppose

the lowering of prim_spork_spoin only introduced one matching spoin. spork_spoin would be

responsible for ensuring that an exception raised by the spork body is propagated across the spoin,

using reification as with the child thread. body’would end with Val (body ()) handle exn => Exn exn,

which incurs an allocation, and, instead of both seqVal’ and seqExn’, there would be a single

fun seq’ br = seq (extract br), which incurs a case analysis. Although MPL
sp

employs an efficient

bump allocator, even this single allocation and case analysis can add significant overhead to

an otherwise non-allocating loop that is executed many times; moreover, these allocations are

extremely short lived and can induce additional garbage collections. Although we do not give a

detailed evaluation along this dimension in Section 5, we observe that having this allocation and

case analysis on the fast path is 1.14x slower on average on both single core and 80 cores.

Using spork_spoin, we implement reduce and par entirely in source SML code. The combina-

tion of monomorphisation, defunctionalization, inlining, and SSA IR optimizations specializes uses

of reduce and par to their call-sites, yielding the control-flow graphs from Figures 5 and 6.

5 Evaluation

We evaluate the performance ofMPL
sp

by comparing it against several systems with different

implementations of parallel primitives, as shown in Figure 8:

• MPL
sp

(our contribution): automatic parallelism management of both primitives par and
reduce, as described in this paper. No parallelism grain control necessary.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Anon.

fun par (f, g) = [prim]
fun reduce (c, z, i, j, f) = [prim]

(a) MPL
sp

has primitives par and reduce imple-

mented as in Figure 5 and 6.

fun par (f, g) = [prim]
fun reduce (c, z, i, j, f) =
if i >= j then z else
if i+1 = j then f i else

c (par (reduce (c, z, i, (i+j)/2, f),
reduce (c, z, (i+j)/2, j, f)))

(b) MPL
s
’s binary-splitting implementation of

reduce in terms its automatically managed par.

fun pare (f, g) = [prim]
fun foldl (c, a, i, j, f) =

if i >= j then a else
foldl (c, c (a, f i), i+1, j, f)

fun reduce (GR , c, z, i, j, f) =
if j-i <= GR then foldl (c, z, i, j, f) else
c (pare (reduce (GR, c, z, i, (i+j)/2, f),

reduce (GR, c, z, (i+j)/2, j, f)))

(c) MPL’s implementation of reduce, which uses ea-

ger pare and requires a manually-tuned grain size

GR to be passed at every call-site.

fun par (f, g) = (f (), g ())
fun reduce (c, a, i, j, f) =
if i >= j then a else
reduce (c, c (a, f i), i+1, j, f)

(d) MLton’s sequential implementations of par and
reduce.

Fig. 8. Definitions of par and reduce for the implementations we evaluate in this section.

• MPL
s
[Westrick et al. 2024]: automatic parallelism management of the primitive par.reduce

is implemented by repeatedly splitting with par down to single iterations, as shown in

Figure 8b. No parallelism grain control necessary.

• MPL [Arora et al. 2021, 2023]: “eager” primitive pare, which always immediately spawns

a new task; reduce is implemented by repeatedly splitting with pare and switching to

sequential fold below a grain size, as shown in Figure 8c. The grain size is tuned manually

at every call-site.

• MLton [MLton nd; Weeks 2006]: sequential compiler on which allMPL
∗
versions are based

on. The primitives par and reduce are replaced with fast sequential implementations, as

shown in Figure 8d.

Except for the presence or absence of manually-tuned grains at each reduce call site, all benchmarks

use the exact same code, with only the particular implementation used above changing.

In our evaluation, we study three parts:

(1) In Section 5.2, we show thatMPL
sp

achieves low overheads relative to sequentialMLton

on a single core, averaging 1.67x slower. At the same time, MPL
sp

maintains good parallel

scalability, averaging 28x speedup on 80 cores relative to sequential MLton and 46x self-

speedup on 80 cores.

(2) In Section 5.3, we demonstrate that compared to manually-tuned parallel code, MPL
sp

needs no manual tuning yet introduces only 1.13x and 1.26x overheads on 1 and 80 cores.

(3) In Section 5.4, we findMPL
sp

improves uponMPL
s
by introducing a new primitive reduce,

compiled using spork, spoin, and setjoin, getting 1.93x and 1.61x faster on 1 and 80 cores.

5.1 Experimental Setup and Benchmarks

Experiments are run on an 80-core machine equipped with two 2.30GHz Intel Xeon (40-core)

Platinum 8380 CPUs and 256GB of memory, running Ubuntu 22.04.4 LTS and Linux kernel version

5.15.0-101-generic. We useMLton version 20210117 andMPL
s
/MPL version 0.5. Benchmark timings

are evaluated with a 5 second warmup and then by taking the average of 20 back-to-back runs. For

more stable results, we disable hyperthreading and pin experiments to particular cores.

We consider 16 benchmarks from the Parallel ML Benchmark Suite [Arora et al. 2021, 2023;

Westrick et al. 2024], covering a variety of problem domains such as graph analysis, computational

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Spork: Automatic Parallelism Management for Loops 17

Table 1. Single-core (𝑇1) and 80-core (𝑇80) times mea-

sured in seconds forMPL
sp
, alongside sequential over-

head and parallel speedup on 80 cores vs MLton.

MLton MPL
sp

Overhead Speedup

Benchmark 𝑇1 𝑇1 𝑇80

𝑇1 (MPL
sp)

𝑇1 (MLton)
𝑇1 (MLton)
𝑇80 (MPL

sp)
bfs 2.88 3.10 .092 1.08 31.4

bignum-add .404 .857 .015 2.12 26.2

delaunay 4.91 7.56 .459 1.54 10.7

grep 1.73 2.38 .043 1.38 40.1

linefit .330 1.27 .038 3.85 8.71

mandelbrot 1.83 2.66 .040 1.46 46.0

map-heavy 3.42 4.21 .055 1.23 62.1

map-light .344 .986 .034 2.87 10.2

msort 3.42 6.14 .092 1.79 37.2

nearest-nbrs .974 1.34 .027 1.38 36.0

nqueens 1.14 1.46 .022 1.29 51.2

primes 1.31 2.11 .057 1.61 23.0

sparse-mxv-csr 1.03 1.76 .037 1.70 28.2

suffix-array 2.31 2.77 .061 1.20 37.6

triangle-count 5.35 8.90 .149 1.67 36.0

wc .489 1.11 .023 2.27 21.6

geomean 1.67 27.6

1 10 20 30 40 50 60 70 80

1

10

20

30

40

50

60

70

80

Processors

S
e
l
f
S
p
e
e
d
u
p

bfs bignum-add delaunay

grep linefit mandelbrot

map-heavy map-light msort

nearest-nbrs nqueens primes

sparse-mxv-csr suffix-array triangle-count

wc

Fig. 9. Self scalability ofMPL
sp

to different processor

counts. The gray line represents ideal speedup.

geometry, sparse linear algebra, numerical algorithms, and text analysis. In all our experiments, the

code for the benchmarks is identical across systems except for the differences shown in Figure 8.

5.2 MPL
sp

has low sequential overhead and good parallel scalability

We evaluate against MLton to determine (a) the overheads of our approach in comparison to a

fast sequential implementation, and (b) the scalability of our approach on increasing number of

processors. Note that for this comparison, MLton uses entirely sequential implementations of par
and reduce as shown in Figure 8d.

Table 1 shows our results on 1 and 80 cores (MPL
sp
), alongside the corresponding sequential

overheads vs MLton and parallel speedups. The column titled
𝑇1 (MPL

sp)
𝑇1 (MLton) shows the overhead of

using potentially parallel code in MPL
sp

instead of purely sequential code even when only one

core is available, with an average of 1.67x overhead. In 12 of the 16 benchmarks,MPL
sp

has less

than 2x overhead.MPL
sp

also maintains good parallel scalability, with 27.6x speedup on average in

comparison to sequentialMLton on 80 cores. In Figure 9, we also plot the self-speedup ofMPL
sp

across a variety of core counts and observe generally that performance improves as the number of

cores increases, with 46x self-speedup on average on 80 cores relative to MPL
sp
’s single-core time.

These results demonstrate that our approach is able to maintain high scalability, even without any

manual tuning or chunking of parallel loops.

The benchmarks bignum-add, linefit, map-light, and wc exhibit larger overheads. These bench-
marks are dominated by an extremely tight loop with only a few instructions per iteration, which

stresses our approach and magnifies any per-loop overhead. We inspected the code generated for

map-light and observed that some of the overhead is due to inefficient register allocation, resulting

in unnecessary stack spilling on the fast path, which could be avoided with further optimization

effort. The primitives spork and spoin offer new opportunities for compiler optimizations, in

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Anon.

Table 2. Overheads ofMPL
sp

vs manually-tuned,

eager MPL

MPL Overhead

Benchmark 𝑇1 𝑇80

𝑇1 (MPL
sp)

𝑇1 (MPL)
𝑇80 (MPL

sp)
𝑇80 (MPL)

bfs 3.14 .078 .988 1.17

bignum-add .730 .012 1.17 1.32

delaunay 7.41 .267 1.02 1.72

grep 2.39 .036 .992 1.18

linefit .557 .021 2.28 1.83

mandelbrot 1.91 .026 1.40 1.53

map-heavy 4.23 .056 .996 .988

map-light 1.11 .034 .886 .994

msort 4.52 .067 1.36 1.37

nearest-nbrs 1.31 .025 1.03 1.09

nqueens 1.60 .023 .914 .958

primes 2.00 .054 1.06 1.05

sparse-mxv-csr 1.75 .035 1.00 1.05

suffix-array 5.62 .096 .493 .637

triangle-count 4.23 .068 2.10 2.17

wc .749 .011 1.48 2.10

geomean 1.13 1.26

Table 3. Improvement factors of

MPL
sp

(ours) over MPL
s
.

MPL
s

Improvement

𝑇1 𝑇80

𝑇1 (MPL
s)

𝑇1 (MPL
sp)

𝑇80 (MPL
s)

𝑇80 (MPL
sp)

5.93 .154 1.91 1.68

1.80 .029 2.10 1.85

7.91 .400 1.05 .872

5.77 .090 2.43 2.10

3.28 .057 2.58 1.50

3.83 .056 1.44 1.41

3.41 .045 .810 .808

7.15 .142 7.26 4.20

6.09 .097 .993 1.06

1.48 .029 1.10 1.08

2.31 .034 1.58 1.53

9.63 .184 4.55 3.23

6.22 .092 3.53 2.51

5.84 .111 2.11 1.80

10.2 .156 1.14 1.05

2.71 .042 2.45 1.87

1.93 1.61

particular by identifying performance-sensitive loop bodies and explicitly distinguishing between

fast and slow paths. We believe that this information could be exploited in future work to further

close the gap between sequential and parallel implementations.

5.3 MPL
sp

competes with manually-tuned parallelism

In this experiment, we compare againstMPL which uses eager implementations of its primitives

and therefore requires manual tuning to amortize the overheads of parallelism. In comparison,

MPL
sp

removes the need for manual tuning while averaging only 1.13x and 1.26x overheads on 1

and 80 cores, respectively. Each of the programs compiled withMPL requires a manually-tuned

grain size at each reduce call site, specifying the number of loop iterations to allocate to each task

for that operation. This is in contrast to the otherwise identical programs compiled withMPL
sp
,

which needs no parallelism grain control and automatically manages task creation at heartbeats.

Full results of this comparison are shown in Table 2.

5.4 MPL
sp

outperforms par-based automatic parallelism management (MPL
s
)

In this section we compare against MPL
s
as developed by Westrick et al. [2024], which (similar

to our approach) features an automatically managed implementation of par based on heartbeat

scheduling with low overhead. Their implementation, however, does not automatically manage

loop splitting overhead, requiring instead that loops are implemented in terms of par as shown in

Figure 8b. This incurs splitting overheads on the fast path. In contrast, ourMPL
sp

automatically

manages not just task creation but also the cost of the splitting itself, ensuring that these splitting

costs are amortized against heartbeats.

We observe that ourMPL
sp

is on average 1.93x and 1.61x faster than Westrick et al. [2024]’s

MPL
s
on 1 and 80 cores, respectively, as shown in Table 3. The biggest improvements are in the

benchmarks that most heavily rely on parallel loops, particularly those with very tight and/or nested

loops. For example, on map-light, our MPL
sp

exhibits 7.26x improvement on a single core; this

benchmark simply iterates over a large array and increments every element by 1. Both primes and
sparse-mxv-csr utilize nested parallel loops with tight inner loops, and we observe 4.55x and 3.53x

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Spork: Automatic Parallelism Management for Loops 19

improvement on a single core. Improvements on 80 cores are similar but smaller, which is expected

because the additional splitting costs incurred byMPL
s
are all local overheads which parallelize

well. Of the 80-core benchmarks,MPL
sp
also outperformsMPL

s
in all but two cases,map-heavy and

delaunay. We inspected map-heavy and found instances of inefficient register allocation resulting

in unnecessary stack spilling on the fast path, which accounts for the discrepancy.

The delaunay benchmark is challenging because it has little theoretical parallelism. The bench-

mark performs many short bursts of parallel computation interspersed by sequential work, making

the end-to-end running time highly sensitive to how quickly each parallel section “ramps up”. While

bothMPL
sp

andMPL
s
use heartbeat scheduling, our automatically managed implementation of

reduce inMPL
sp

can take approximately twice as many heartbeats to disperse computation across

all processors, due to the implementation of the three-way split: the first promotion generates a

new task, but this task then waits for a second promotion to split the remaining iterations in half.

Existing work has shown that it is possible to increase the heartbeat rate on stock hardware [Rainey

et al. 2021; Su et al. 2024], which if applied in this case would improve scalability by decreasing the

delay between successive heartbeats. Nevertheless, even in the case of low parallelism in delaunay,
MPL

sp
is only 13% slower than MPL

s
on 80 cores.

6 Related Work

Scheduling techniques. All high-level parallel programming languages rely on a run-time sched-

uler for managing tasks/threads, including their creation and load-balancing among the available

cores. Nearly all known schedulers today go back to Brent’s seminal work in 1970s [Brent 1974],

which established a bound of
𝑊
𝑃
+𝑆 for scheduling a task-parallel program on 𝑃 processors in terms

of total work𝑊 and span 𝑆 . Subsequent work generalized the bound to greedy scheduling [Arora

et al. 2001; Eager et al. 1989], to randomized work-stealing [Arora et al. 2001; Blumofe and Leiserson

1999], and to account for data locality [Acar et al. 2015, 2002; Blelloch and Gibbons 2004; Chowdhury

and Ramachandran 2008; Lee et al. 2015; Spoonhower et al. 2009], and responsiveness [Muller et al.

2020; Muller and Acar 2016; Muller et al. 2017, 2018, 2023, 2019]. None of this work accounts for

the cost of spawning a task/thread.

Lazy task creation and lazy scheduling. In early 1990s, Mohr introduced lazy task creation to

mitigate task overheads [Mohr et al. 1991] and efficient implementation techniques have been

developed for futures and parallel calls [Feeley 1992, 1993a; Goldstein et al. 1996]. Follow-up work

adopted the idea for work-stealing schedulers [Bergstrom et al. 2012; Hiraishi et al. 2009; Kumar

et al. 2012; Tzannes 2012; Tzannes et al. 2010, 2014] and developed related techniques such as the

clone optimization [Frigo et al. 1998] to further mitigate scheduler overheads. These techniques are

able to spawn additional tasks in response to system load imbalance, and can help guarantee low

overhead for “sequentialized” tasks, i.e., tasks that are never spawned, or tasks that are spawned

but never migrated to another processor.

Granularity control. Task creation overheads can also be tamed using granularity control tech-
niques, where the goal is to ensure that every spawned task executes a sizeable amount of work.

Granularity control can be performed manually (e.g., by hardcoding sequential cutoffs and/or task

size parameters), but this approach has major limitations with respect to portability, accuracy,

and code modularity [Tzannes 2012; Westrick et al. 2024]. Numerous approaches and techniques

have been proposed to address the limitations of manual granularity control [Duran et al. 2008;

Huelsbergen et al. 1994; Iwasaki and Taura 2016; Loidl and Hammond 1995; Lopez et al. 1996;

Pehoushek and Weening 1990; Shen et al. 1999; Weening 1989], relying on assumptions such as

statically predictable time complexities, user annotations, or access to dynamic profiling data.

Subsequent work combines static annotations and dynamic profiling to provide the first provable

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Anon.

guarantee of low overhead and high scalability, using an approach called oracle-guided granularity

control [Acar et al. 2019, 2011, 2016a]. This approach requires the user to supply cost functions for

parallel code, which is sometimes difficult and in general not always possible.

Heartbeat scheduling. Recent work has taken a new approach based on a technique called hartbeat

scheduling [Acar et al. 2018] which in principle is both provably efficient (ensuring low overhead

and high scalability in all cases) and fully automatic (requiring no user annotation or manual

tuning). The idea is to lazily create tasks according to a regular periodic pulse, i.e., a “heartbeat”.

At every pulse, each processor spawns the oldest possible task. This approach guarantees every

spawn can be charged against work completed between heartbeats; additionally, as proven by Acar

et al. [2018], it guarantees that the critical path length of the computation is stretched by at most a

constant factor, i.e., all theoretical parallelism is asymptotically preserved.

Implementing heartbeat scheduling in practice requires a low-level pre-emptionmechanism (such

as software polling [Basu et al. 2021; Feeley 1993b; Ghosh et al. 2020b]) to respond to heartbeats in

a timely manner, which can be challenging to incorporate automatically into compiler-generated

code without sacrificing sequential efficiency. Early implementations of heartbeat scheduling

had minimal compiler support and required significant manual rewriting to ensure efficiency in

practice [Acar et al. 2018; Rainey 2023; Rainey et al. 2021]. Recently, Su et al. [2024] demonstrated

that heartbeat scheduling is capable of outperforming manual tuning for data-dependent and/or

irregularworkloads. Their approach places some restrictions on loop bodies (e.g., they do not support

nested loops hidden behind a function call) and more generally they do not consider higher-order

functions and integration with automatic memory management and scheduling. Our approach

is most similar to automatic parallelism management [Westrick et al. 2024] which guarantees

efficiency and scalability in a high-level fork-join language. This prior work only supports two-way

fork-join parallelism, which (as discussed in Section 2) is insufficient to guarantee low overhead in

comparison to sequential loops, a limitation which we address in this paper.

Language support for parallelism. A variety of languages have been developed with parallel prim-

itives built directly into the compiler and run-time system. Examples include multiLisp [Halstead

1984], NESL [Blelloch 1996], Cilk [Frigo et al. 1998; Schardl and Lee 2023; Schardl et al. 2017],

OpenMP [OpenMP Architecture Review Board [n. d.]], several extensions of Java [Bocchino et al.

2009; Imam and Sarkar 2014; Lea 2000], X10 [Charles et al. 2005], parallel Haskell [Li et al. 2007;

Marlow and Peyton Jones 2011; Peyton Jones et al. 2008], and several forms of parallel ML [Arora

et al. 2021, 2023; Elsman and Henriksen 2023; Fluet et al. 2011, 2007; Guatto et al. 2018; Raghu-

nathan et al. 2016; Sivaramakrishnan et al. 2020, 2014; Spoonhower 2009; Westrick et al. 2024, 2020].

Language-level support for parallelism often comes in the form of structured parallel primitives,

such as fork-join primitives (e.g. two-way “par” and parallel for-loops), futures, and async-finish,

which are all closely related [Acar et al. 2016b].

7 Conclusion

In this paper we present an automatic parallelism management technique for parallel loops and

reductions, leveraging heartbeat scheduling to automatically amortize the overheads of splitting a

loop into parallel tasks. As a result, we remove the need to manually tune chunk sizes for loops,

greatly simplifying code while only introducing mild overheads relative to sequential loops and

maintaining high scalability. Our evaluation with a broad set of benchmarks show that the proposed

approach extracts excellent performance from parallel codes that make absolutely no effort to

control the overhead of parallelism, delivering performance within 25% of manually optimized

code across all core counts. These results show that automatic parallelism management techniques

may be able deliver a future where performant parallelism requires no programmer involvement.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Spork: Automatic Parallelism Management for Loops 21

References

Umut A. Acar, Vitaly Aksenov, Arthur Charguéraud, and Mike Rainey. 2019. Provably and Practically Efficient Granularity

Control. In Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming (Washington, District of

Columbia) (PPoPP ’19). 214–228.
Umut A. Acar, Guy Blelloch, Matthew Fluet, Stefan K. Muller, and Ram Raghunathan. 2015. Coupling Memory and

Computation for Locality Management. In Summit on Advances in Programming Languages (SNAPL).
Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. 2002. The Data Locality of Work Stealing. Theory of Computing

Systems 35, 3 (2002), 321–347.
Umut A. Acar, Arthur Charguéraud, Adrien Guatto, Mike Rainey, and Filip Sieczkowski. 2018. Heartbeat Scheduling:

Provable Efficiency for Nested Parallelism. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation (Philadelphia, PA, USA) (PLDI 2018). 769–782.

Umut A. Acar, Arthur Charguéraud, and Mike Rainey. 2011. Oracle Scheduling: Controlling Granularity in Implicitly

Parallel Languages. In ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). 499–518.

Umut A. Acar, Arthur Charguéraud, and Mike Rainey. 2016a. Oracle-guided scheduling for controlling granularity in

implicitly parallel languages. Journal of Functional Programming (JFP) 26 (2016), e23.
Umut A. Acar, Arthur Charguéraud, Mike Rainey, and Filip Sieczkowski. 2016b. Dag-calculus: A Calculus for Parallel

Computation. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming (ICFP 2016).
18–32.

Jatin Arora, SamWestrick, and Umut A. Acar. 2021. Provably Space Efficient Parallel Functional Programming. In Proceedings
of the 48th Annual ACM Symposium on Principles of Programming Languages (POPL).

Jatin Arora, Sam Westrick, and Umut A. Acar. 2023. Efficient Parallel Functional Programming with Effects. Proc. ACM
Program. Lang. 7, PLDI (2023), 1558–1583. https://doi.org/10.1145/3591284

Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. 2001. Thread Scheduling for Multiprogrammed Multiprocessors.

Theory of Computing Systems 34, 2 (2001), 115–144.
Nilanjana Basu, Claudio Montanari, and Jakob Eriksson. 2021. Frequent Background Polling on a Shared Thread, Using

Light-Weight Compiler Interrupts. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York,

NY, USA, 1249–1263. https://doi.org/10.1145/3453483.3454107

Lars Bergstrom, Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. 2012. Lazy Tree Splitting. J. Funct. Program. 22,
4-5 (Aug. 2012), 382–438.

Guy E. Blelloch. 1996. Programming Parallel Algorithms. Commun. ACM 39, 3 (1996), 85–97.

Guy E. Blelloch and Phillip B. Gibbons. 2004. Effectively sharing a cache among threads. In SPAA (Barcelona, Spain).

Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling multithreaded computations by work stealing. J. ACM 46

(Sept. 1999), 720–748. Issue 5.

Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen Heumann, Rakesh Komuravelli, Jeffrey Overbey,

Patrick Simmons, Hyojin Sung, and Mohsen Vakilian. 2009. A type and effect system for deterministic parallel Java. In

Proceedings of the 24th ACM SIGPLAN conference on Object oriented programming systems languages and applications
(Orlando, Florida, USA) (OOPSLA ’09). 97–116.

Richard P. Brent. 1974. The parallel evaluation of general arithmetic expressions. J. ACM 21, 2 (1974), 201–206.

Henry Cejtin, Suresh Jagannathan, and Stephen Weeks. 2000. Flow-directed Closure Conversion for Typed Languages. In

Proceedings of the Annual European Symposium on Programming (ESOP). 56–71.
Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von

Praun, and Vivek Sarkar. 2005. X10: an object-oriented approach to non-uniform cluster computing. In Proceedings of the
20th annual ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications (San Diego,

CA, USA) (OOPSLA ’05). ACM, 519–538.

Rezaul Alam Chowdhury and Vijaya Ramachandran. 2008. Cache-efficient dynamic programming algorithms for multicores.

In Proc. 20th ACM Symposium on Parallelism in Algorithms and Architectures (Munich, Germany). ACM, New York, NY,

USA, 207–216.

A. Duran, J. Corbalan, and E. Ayguade. 2008. An adaptive cut-off for task parallelism. In 2008 SC - International Conference
for High Performance Computing, Networking, Storage and Analysis. 1–11.

Derek L. Eager, John Zahorjan, and Edward D. Lazowska. 1989. Speedup versus efficiency in parallel systems. IEEE
Transactions on Computing 38, 3 (1989), 408–423.

Martin Elsman and Troels Henriksen. 2023. Parallelism in a Region Inference Context. Proc. ACM Program. Lang. 7, PLDI
(2023), 884–906. https://doi.org/10.1145/3591256

Marc Feeley. 1992. A Message Passing Implementation of Lazy Task Creation. In Parallel Symbolic Computing. 94–107.

https://doi.org/10.1145/3591284
https://doi.org/10.1145/3453483.3454107
https://doi.org/10.1145/3591256

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Anon.

Marc Feeley. 1993a. An efficient and general implementation of futures on large scale shared-memory multiprocessors. Ph. D.
Dissertation. Brandeis University, Waltham, MA, USA. UMI Order No. GAX93-22348.

Marc Feeley. 1993b. Polling Efficiently on Stock Hardware. In Proceedings of the 1993 ACM SIGPLAN Conference on Functional
Programming and Computer Architecture. Copenhagen, Denmark, 179–187.

Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. 2011. Implicitly threaded parallelism in Manticore. Journal of
Functional Programming 20, 5-6 (2011), 1–40.

Matthew Fluet, Mike Rainey, John Reppy, Adam Shaw, and Yingqi Xiao. 2007. Manticore: A Heterogeneous Parallel Language.

In Proceedings of the 2007 Workshop on Declarative Aspects of Multicore Programming (Nice, France) (DAMP ’07). 37–44.
Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The Implementation of the Cilk-5 Multithreaded Language.

In PLDI. 212–223.
Souradip Ghosh, Michael Cuevas, Simone Campanoni, and Peter Dinda. 2020a. Compiler-Based Timing for Extremely

Fine-Grain Preemptive Parallelism. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (Atlanta, Georgia) (SC ’20). IEEE Press, Article 53, 15 pages.

Souradip Ghosh, Michael Cuevas, Simone Campanoni, and Peter Dinda. 2020b. Compiler-Based Timing For Extremely

Fine-Grain Preemptive Parallelism. In SC20: International Conference for High Performance Computing, Networking, Storage
and Analysis. 1–15. https://doi.org/10.1109/SC41405.2020.00057

Seth Copen Goldstein, Klaus Erik Schauser, and David E Culler. 1996. Lazy threads: Implementing a fast parallel call. J.
Parallel and Distrib. Comput. 37, 1 (1996), 5–20.

Adrien Guatto, SamWestrick, Ram Raghunathan, Umut A. Acar, andMatthew Fluet. 2018. Hierarchical memory management

for mutable state. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP 2018, Vienna, Austria, February 24-28, 2018. 81–93.

Robert H. Halstead, Jr. 1984. Implementation of Multilisp: Lisp on a Multiprocessor. In Proceedings of the 1984 ACM
Symposium on LISP and functional programming (Austin, Texas, United States) (LFP ’84). ACM, 9–17.

Tasuku Hiraishi, Masahiro Yasugi, Seiji Umatani, and Taiichi Yuasa. 2009. Backtracking-based load balancing. In PPoPP ’09
(Raleigh, NC, USA). ACM, 55–64.

Lorenz Huelsbergen, James R. Larus, and Alexander Aiken. 1994. Using the Run-time Sizes of Data Structures to Guide

Parallel-thread Creation. In Proceedings of the 1994 ACM Conference on LISP and Functional Programming (Orlando,

Florida, USA) (LFP ’94). 79–90.
Shams Mahmood Imam and Vivek Sarkar. 2014. Habanero-Java library: a Java 8 framework for multicore programming. In

2014 International Conference on Principles and Practices of Programming on the Java Platform Virtual Machines, Languages
and Tools, PPPJ ’14. 75–86.

Shintaro Iwasaki and Kenjiro Taura. 2016. A static cut-off for task parallel programs. In Proceedings of the 2016 International
Conference on Parallel Architectures and Compilation. ACM, 139–150.

Joseph Jaja. 1992. An introduction to parallel algorithms. Addison Wesley Longman Publishing Company.

Richard A. Kelsey. 1995. A correspondence between continuation passing style and static single assignment form. In ACM
SIGPLAN Workshop on Intermediate Representations (San Francisco, California, United States). 13–22.

Vivek Kumar, Daniel Frampton, Stephen M. Blackburn, David Grove, and Olivier Tardieu. 2012. Work-stealing without

the baggage. In Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012, Gary T. Leavens

and Matthew B. Dwyer (Eds.). ACM, 297–314. https://doi.org/10.1145/2384616.2384639

Doug Lea. 2000. A Java fork/join framework. In Proceedings of the ACM 2000 conference on Java Grande (San Francisco,

California, USA) (JAVA ’00). 36–43.
I-Ting Angelina Lee, Charles E. Leiserson, Tao B. Schardl, Zhunping Zhang, and Jim Sukha. 2015. On-the-Fly Pipeline

Parallelism. TOPC 2, 3 (2015), 17:1–17:42.

Peng Li, Simon Marlow, Simon L. Peyton Jones, and Andrew P. Tolmach. 2007. Lightweight concurrency primitives for GHC.

In Proceedings of the ACM SIGPLAN Workshop on Haskell, Haskell 2007, Freiburg, Germany, September 30, 2007. 107–118.
Hans-Wolfgang Loidl and Kevin Hammond. 1995. On the granularity of divide-and-conquer parallelism. In Proceedings of

the 1995 Glasgow Workshop on Functional Programming. 1–10.
P. Lopez, M. Hermenegildo, and S. Debray. 1996. A methodology for granularity-based control of parallelism in logic

programs. Journal of Symbolic Computation 21 (June 1996), 715–734. Issue 4-6.

Simon Marlow and Simon L. Peyton Jones. 2011. Multicore garbage collection with local heaps. In Proceedings of the 10th
International Symposium on Memory Management, ISMM 2011, San Jose, CA, USA, June 04 - 05, 2011, Hans-Juergen Boehm

and David F. Bacon (Eds.). ACM, 21–32.

MLton n.d.. MLton web site. http://www.mlton.org.

E. Mohr, D. A. Kranz, and R. H. Halstead. 1991. Lazy task creation: a technique for increasing the granularity of parallel

programs. IEEE Transactions on Parallel and Distributed Systems 2, 3 (1991), 264–280.

https://doi.org/10.1109/SC41405.2020.00057
https://doi.org/10.1145/2384616.2384639
http://www.mlton.org

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Spork: Automatic Parallelism Management for Loops 23

Stefan Muller, Kyle Singer, Noah Goldstein, Umut A. Acar, Kunal Agrawal, and I-Ting Angelina Lee. 2020. Responsive Paral-

lelism with Futures and State. In Proceedings of the ACM Conference on Programming Language Design and Implementation
(PLDI).

Stefan K. Muller and Umut A. Acar. 2016. Latency-Hiding Work Stealing: Scheduling Interacting Parallel Computations

with Work Stealing. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2016,
Asilomar State Beach/Pacific Grove, CA, USA, July 11-13, 2016. 71–82.

Stefan K. Muller, Umut A. Acar, and Robert Harper. 2017. Responsive Parallel Computation: Bridging Competitive and

Cooperative Threading. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Barcelona, Spain) (PLDI 2017). ACM, New York, NY, USA, 677–692.

Stefan K. Muller, Umut A. Acar, and Robert Harper. 2018. Types and Cost Models for Responsive Parallelism. In Proceedings
of the 14th ACM SIGPLAN International Conference on Functional Programming (ICFP ’18).

Stefan K. Muller, Kyle Singer, Devyn Terra Keeney, Andrew Neth, Kunal Agrawal, I-Ting Angelina Lee, and Umut A. Acar.

2023. Responsive Parallelism with Synchronization. Proc. ACM Program. Lang. 7, PLDI (2023), 712–735.
Stefan K. Muller, Sam Westrick, and Umut A. Acar. 2019. Fairness in Responsive Parallelism. In Proceedings of the 24th ACM

SIGPLAN International Conference on Functional Programming (ICFP 2019).
OpenMP Architecture Review Board. [n. d.]. OpenMP Application Program Interface. http://www.openmp.org/

Joseph Pehoushek and Joseph Weening. 1990. Low-cost process creation and dynamic partitioning in Qlisp. In Parallel Lisp:
Languages and Systems, Takayasu Ito and Robert Halstead (Eds.). Lecture Notes in Computer Science, Vol. 441. Springer

Berlin / Heidelberg, 182–199.

Simon L. Peyton Jones, Roman Leshchinskiy, Gabriele Keller, and Manuel M. T. Chakravarty. 2008. Harnessing the Multicores:

Nested Data Parallelism in Haskell. In FSTTCS. 383–414.
Ram Raghunathan, Stefan K. Muller, Umut A. Acar, and Guy Blelloch. 2016. Hierarchical Memory Management for Parallel

Programs. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming (Nara, Japan)

(ICFP 2016). ACM, New York, NY, USA, 392–406.

Mike Rainey. 2023. The best multicore-parallelization refactoring you’ve never heard of. arXiv:2307.10556 [cs.DC]

Mike Rainey, Ryan R. Newton, Kyle C. Hale, Nikos Hardavellas, Simone Campanoni, Peter A. Dinda, and Umut A. Acar.

2021. Task parallel assembly language for uncompromising parallelism. In PLDI ’21: 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, Virtual Event, Canada, June 20-25, 20211, Stephen N.

Freund and Eran Yahav (Eds.). ACM, 1064–1079.

John C. Reynolds. 1972. Definitional Interpreters for Higher-order Programming Languages. In Proceedings of the 25𝑡ℎACM
National Conference. 717–740.

Tao B. Schardl and I-Ting Angelina Lee. 2023. OpenCilk: A Modular and Extensible Software Infrastructure for Fast

Task-Parallel Code. In Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel
Programming, PPoPP 2023, Montreal, QC, Canada, 25 February 2023 - 1 March 2023, Maryam Mehri Dehnavi, Milind

Kulkarni, and Sriram Krishnamoorthy (Eds.). ACM, 189–203. https://doi.org/10.1145/3572848.3577509

Tao B. Schardl, William S. Moses, and Charles E. Leiserson. 2017. Tapir: Embedding Fork-Join Parallelism into LLVM’s

Intermediate Representation. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (Austin, Texas, USA) (PPoPP ’17). Association for Computing Machinery, New York, NY, USA, 249–265.

https://doi.org/10.1145/3018743.3018758

Kish Shen, Vitor Santos Costa, and Andy King. 1999. Distance: A new metric for controlling granularity for parallel

execution. Journal of Functional and Logic Programming 1999 (1999), 1–23.

K. C. Sivaramakrishnan, Stephen Dolan, LeoWhite, Sadiq Jaffer, Tom Kelly, Anmol Sahoo, Sudha Parimala, Atul Dhiman, and

Anil Madhavapeddy. 2020. Retrofitting parallelism onto OCaml. Proc. ACM Program. Lang. 4, ICFP (2020), 113:1–113:30.

K. C. Sivaramakrishnan, Lukasz Ziarek, and Suresh Jagannathan. 2014. MultiMLton: A multicore-aware runtime for standard

ML. Journal of Functional Programming FirstView (6 2014), 1–62.

Daniel Spoonhower. 2009. Scheduling Deterministic Parallel Programs. Ph. D. Dissertation. Carnegie Mellon University.

https://www.cs.cmu.edu/~rwh/theses/spoonhower.pdf

Daniel Spoonhower, Guy E. Blelloch, Phillip B. Gibbons, and Robert Harper. 2009. Beyond Nested Parallelism: Tight Bounds

on Work-stealing Overheads for Parallel Futures. In Proceedings of the Twenty-first Annual Symposium on Parallelism in
Algorithms and Architectures (Calgary, AB, Canada) (SPAA ’09). ACM, New York, NY, USA, 91–100.

Yian Su, Mike Rainey, Nicholas Wanninger, Nadharm Dhiantravan, Jasper Liang, Umut A. Acar, Peter Dinda, and Simone

Campanoni. 2024. Compiling Loop-Based Nested Parallelism for Irregular Workloads. In International Conference on
Architectural Support for Programming Languages and Operating System (ASPLOS).

Alexandros Tzannes. 2012. Enhancing Productivity and Performance Portability of General-Purpose Parallel Programming.
Ph. D. Dissertation. University of Maryland.

Alexandros Tzannes, George C. Caragea, Rajeev Barua, and Uzi Vishkin. 2010. Lazy binary-splitting: a run-time adaptive

work-stealing scheduler. In PPoPP ’10. 179–190.

http://www.openmp.org/
https://arxiv.org/abs/2307.10556
https://doi.org/10.1145/3572848.3577509
https://doi.org/10.1145/3018743.3018758
https://www.cs.cmu.edu/~rwh/theses/spoonhower.pdf

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Anon.

Alexandros Tzannes, George C. Caragea, Uzi Vishkin, and Rajeev Barua. 2014. Lazy Scheduling: A Runtime Adaptive

Scheduler for Declarative Parallelism. TOPLAS 36, 3, Article 10 (Sept. 2014), 51 pages.
Stephen Weeks. 2006. Whole-program compilation in MLton. In ML ’06: Proceedings of the 2006 workshop on ML (Portland,

Oregon, USA). ACM, 1–1.

Joseph S. Weening. 1989. Parallel Execution of Lisp Programs. Ph. D. Dissertation. Stanford University. Computer Science

Technical Report STAN-CS-89-1265.

Sam Westrick, Jatin Arora, and Umut A. Acar. 2022a. Entanglement Detection With Near-Zero Cost. In Proceedings of the
27th ACM SIGPLAN International Conference on Functional Programming (ICFP 2022).

Sam Westrick, Matthew Fluet, Mike Rainey, and Umut A. Acar. 2024. Automatic Parallelism Management. In Proceedings of
the 33rd Annual ACM Symposium on Principles of Programming Languages (POPL) (POPL ’24).

Sam Westrick, Mike Rainey, Daniel Anderson, and Guy E. Blelloch. 2022b. Parallel block-delayed sequences. In PPoPP ’22:
27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Seoul, Republic of Korea, April 2 - 6,
2022, Jaejin Lee, Kunal Agrawal, and Michael F. Spear (Eds.). ACM, 61–75. https://doi.org/10.1145/3503221.3508434

Sam Westrick, Rohan Yadav, Matthew Fluet, and Umut A. Acar. 2020. Disentanglement in Nested-Parallel Programs. In

Proceedings of the 47th Annual ACM Symposium on Principles of Programming Languages (POPL).

https://doi.org/10.1145/3503221.3508434

	Abstract
	1 Introduction
	2 Overview and Key Ideas
	3 Spork: Sequential/Parallel Fork
	3.1 The SSAsp Intermediate Representation
	3.2 Operational Semantics
	3.3 Implementing Parallel reduce with spork
	3.4 Implementing par with spork

	4 Implementation
	4.1 Separation of Compiler and Scheduler
	4.2 Back-End Changes: Using Frames to Implement spork, spoin, and Promotion
	4.3 Front-End and Closure-Conversion Changes
	4.4 Parallelism Management
	4.5 Work-Stealing Scheduler
	4.6 Integration via Source SML Code

	5 Evaluation
	5.1 Experimental Setup and Benchmarks
	5.2 MPLsp has low sequential overhead and good parallel scalability
	5.3 MPLsp competes with manually-tuned parallelism
	5.4 MPLsp outperforms par-based automatic parallelism management (MPLs)

	6 Related Work
	7 Conclusion
	References

